Fraud detection using predictive modeling

Report 7 Downloads 203 Views
US005819226A

United States Patent [19]

[11]

Patent Number:

5,819,226

Gopinathan et al.

[45]

Date of Patent:

Oct. 6, 1998

[54]

FRAUD DETECTION USING PREDICTIVE MODELING

[75]

Inventors: Krishna M. Gopinathan; Louis S. Biafore; William M. Ferguson; Michael A. Lazarus, all of San Diego; Anu K. Pathria, Oakland; Allen J ost, San Diego, all of Calif.

OTHER PUBLICATIONS

Electric Academy Electric PoWer Technology Institute Data PE—89—33, “Analysis of Learning Process of Neural Net Work on Security Assessment”, pp. 161—170. Gullo, Karen, “Neural Nets Versus Card Fraud Chase’s Software Learns to Detect Potential Crime” Feb. 2, 1990 American Banker Magazine .

[73] Assignee: HNC Software Inc., San Diego, Calif.

International Search Report, International Application No PCT/US93/08400, mailed Jan. 12, 1994.

[21] Appl. No.: 941,971

—Propagating Errors” Nature v. 323, pp. 533—536 (1986).

Rumelhart, K.E., et al., “Learning Representations by Back .

_

Hecht—Nielsen, R., “Theory of the Backpropagation Neural

[22]

Flled'

Sep' 8’ 1992

NetWor ”, Neural Networks for Perception pp. 65—93

[51]

Int. Cl.6 ................................................. .. G06F 157/00

(1992)

[52] [58]

US. Cl. ................................................................. .. 705/1 Field of Search ................................... .. 364/401, 406,

Weigend, A.S., et al., “Generalization by Weight—Elimina tion With Application to Forecasting”, Advances in Neural

364/408; 395/21, 23; 235/23, 380; 705/35, 1

[56]

References Cited

Primary Examiner—Gail O. Hayes Attorney, Agent, or Firm—FenWick & West LLP

US. PATENT DOCUMENTS 5,025,372 5,416,067

Information Processing Systems 3 pp. 875—882.

[57]

6/1991 Burton et al. ......................... .. 364/406 5/1995 Sloan et al. ........................... .. 235/381

FOREIGN PATENT DOCUMENTS

ABSTRACT

An automated system and method detects fraudulent trans actions using a predictive model such as a neural network to

evaluate individual customer accounts and identify poten

t1ally fraudulent transactions based on learned relationships

0 418 144 A1 0 421 808 A3 0 468 229 A2

3/1991 4/1991 7/1991

European Pat. Off. ........ .. G06F 7/08 European Pat- Off- -------- -- G07F 7/10 European Pat O? GOGF 15/80

among known variables. The system may also output reason codes indicating relative contributions of various variables

A62-74768

4/1987

Japan ................ ..

performance and redevelops the model When performance

A63-184870

7/1988

Japan

. G06F 15/30

A4-113220

4/1992

Japan

.. G01D 3/00

A4- 220758 WO 89/06398

8/1992 7/1989

Japan . G06F 15/18 WIPO ........................... .. G06F 15/30

G06F 15/30

to a particular result. The system periodically monitors its dro S below a p

redetermined level p

'

38 Claims, 21 Drawing Sheets

801

802

805

Model

Transaction

Development

Processing



804

Past Data

Property Data

'

806

Create or update 7

profile

Build Model

Fraud scores and reason

108

codes

Neural Network 1

807

Output

100

Area Data

f

U.S. Patent

106 F'mancla ' 1 D at a

Facility

0a. 6, 1998

Sheet 1 0f 21

5,819,226

102

103

RAM

Data Storage

_\

\ 108

105

101

—D Data Network

D

CPU

104

107

Output Device

Program Storage

100

FIGURE 1

U.S. Patent



Oct.6,1998

FALCON

Cutoff Score

Sheet 2 0f 21

5,819,226

Monitor

700 W’ 202

Accounts over cutoff

143 "\_/ 203

Analyst Loading 25 -

Flags

t2‘ 10 W 5 _

O

2

6

10 ‘I4 18 22

Hours

1000— 800 600

'Q

‘\ 207

400- Q 200 O_

I‘?

v

‘*1

— 204

Froud Score 506 5401 01 3767232881 OK

Help

FIGURE 2

k 205

U.S. Patent

0a. 6, 1998

Sheet 3 0f 21

5,819,226

Account Selection Score 886 889 895 898 898 902 902 908 91 1 916 927 932 933 935 943 964 965

Account 5403173602031736 5484743400847434 5467884700678847 4446833257468332 5422023883220238 4419793403197934 4401377501013775 4413703002137030 4406383663063836 4402489633024796 5446281200462812 5403173602031736 5430354200303542 4400021016000210 4412540900125109 5400177963001779 5419472700194727

966§4400613000006130 968 988 993 994

5400004602000046 5403215301032153 5440625003406250 5426836600268366

Evaluate

Restrict

0K

Help

FIGURE 3

I’ 302

U.S. Patent



Oct.6,1998

Sheet 4 0f 21

5,819,226

Account Score

Account 4400613000006130

Reasons

Nome Sondro

Score 966

Simpson

~7\403

\J\ 402

1 Suspicious approve/decline pattern 2 Suspicious recent tronsoction rote

3 Suspicious previous day tronsoction octivity Current and Previous 7 days Auth Records Tron Amt Dote Time Avcred CredLim Sic MerchZip 22.10 920320 111856 10.00 1000.00 5399 0.00 29.95 920320 112737 32.00 1000.00 5399 0.00 25.30 920321 235944 61.00 1000.00 5812 0.00 23.04 920322 3624 61.00 1000.00 5331 0.00 54.00 920322 142607 86.00 1000.00 5331 0.00 54.00 920322 142756 86.00 1000.00 5311 0.00 Lost 6 months 10.35 920217 224749 127.00 1000.00 5942 0.00 50.00 920222 230825 685.00 1000.00 5541 0.00 69.27 920223 4446 635.00 1000.00 5812 0.00 10.35 920223 5800 566.00 1000.00 5942 0.00 25.37 920224 202441 556.00 1000.00 5499 0.00 254.70 920229 4803 507.00 1000.00 5399 0.00

i 406

OK

Help

i FIGURE 4

407

U.S. Patent

0a. 6, 1998



Sheet 5 0f 21

5,819,226

Cordholder Info

502

Account 4400613000006130 —\__/(/ Nomel

Sandro

Simpson

Nome2

Joseph

Simpson

_I 503 504

Best time to coll _ Phone

Diol

7 — 10 pm

*1’

numbers

Home

612-345-6328

_

Diol Work 1 612—635—2348

L505

Diol Work 2 6l2—325—6723 _ Address

Addrl

915 No. Arlington Heights R0

‘1507

Addr2 City

Minneapolis

State

MN

OK

\

.

1

Qecision

‘Id 507

Zip 55402

Help

FIGURE 5

505

U.S. Patent

Oct. 6, 1998



Sheet 6 0f 21

5,819,226

Decision

|:| No contact; all phones II No contact; msg. left

|:| Customer leri?ed chorge(s) @ Customer Qenied chorge(s) |:| Customer _u_nsure of ohorge(s)

I1 Desk gpprovol

Comments

\602

Customer Denied all charges on 3/22/92

L503

OK

Cancel

Help

\

i604 FIGURE 6

\\

507

U.S. Patent

Oct. 6, 1998

Sheet 7 0f 21

701

Train network model

using past data

i

702

Store network model

i

703

Obtain data for current transaction

l

704

Apply network model to current

transaction

i

705

Output results

FIGURE 7

5,819,226

U.S. Patent

0a. 6, 1998

Sheet 9 0f 21

5,819,226

I

903

Transfer function 901

FIGURE 9

U.S. Patent

Oct.6,1998

Sheet 10 0f 21

FIGURE 10

5,819,226

U.S. Patent

Oct.6,1998

Sheet 11 0f 21

5,819,226

w23iu5w

m : Saw5w

m9E%w.m k

Po:

N628

mo:

mwLhax

2:.

wm gop

%

m1; >tH2Dou9m5

$358?

or: >#5m08“w

$32. ,

m : 81 m

PM: NSHGauUQwmE

ow:

mo:

m7dmcw ow:

wmuoacw

Z:

w@E3o82

526i

U.S. Patent

Oct. 6, 1998

Sheet 12 0f 21

1 202

Read past transaction ‘ database

1

1203

Read customer

database

l

1204

Generate new profile record

1

1205

Save new profile record in profile

database

FIGURE 12

More accounts?

5,819,226

U.S. Patent

Oct. 6, 1998

Sheet 13 0f 21

1301

Start

1302

Read past transaction database

1 1 303

Read customer

database

1 1 304

Read record from

profile database

1 1 305

Generate updated profile record

1 1 306

Save updated profile record in profile database

FIGURE 13

More accounts?

5,819,226

U.S. Patent

Oct. 6, 1998

Sheet 14 0f 21

FIGURE 14 1 402

Record all transactions

throughout the day

l 1403 Obtain current transaction data

+ 1404

Obtain past transaction data, customer data, and

profile data

l 1405

Apply data to neural network

+ 1406 Obtain fraud score

from neural network

Is fraud score > threshold?

1408

Flag account

5,819,226

U.S. Patent

Oct. 6, 1998

Sheet 15 0f 21

FIGURE 15

1502

Merchant calls for authorization

l 1503

If account not already

flagged, authorize transaction

l 1504

Obtain current transaction data

+ 1505

Obtain past transaction data, customer data, and

profile data

1 1506

Apply data to neural network

+ 1507 Obtain fraud score

from neural network

Is fraud score > threshold?

1509

Flag account

5,819,226

U.S. Patent

Oct.6,1998

Sheet 16 0f 21

5,819,226

1601

FIGURE 16

Start

1602

Merchant calls for authorization

1 1603

Obtain current transaction data

+ 1604

Obtain profile data

1 1605

Apply data to neural network

t 1 606 Obtain fraud score

from neural network

Is fraud score > threshold?

1 608

1 609

Send signal to authorization system

Send signal to authorization system

indicating high fraud

indicating low fraud

score, and flag

score

account

1 61 0

——> Update profile data 4—

U.S. Patent

Oct.6,1998

Sheet 17 0f 21

1701

Start

1702

CINITNET

1703

CSCORE

4—

More accounts?

1705

CFREENET

FIGURE 17

5,819,226

U.S. Patent

Oct. 6, 1998

Sheet 18 0f 21

1801

Start

1802

Obtain current transaction data

1 1803

Obtain data on other transactions within

the last 7 days

1 1 804

Obtain record from

profile database

1 1805

Obtain customer data

1 1806

Generate fraud-related variables

1 1807

Run DeployNet

1 1808

Output score and reason codes

1809

End

FIGURE 18

5,819,226

U.S. Patent

Oct. 6, 1998

Sheet 19 0f 21

1901

Start

1902

Scale fraud-related variables

l

1 903

Initialize input layer of neural network

i

1904

Iterate network to generate score and reason codes

FIGURE 19

5,819,226