Fujimoto ICCS 6 15 Final

Efficient  Execu+on  of  Replicated   Transporta+on  Simula+ons  with   Uncertain  Vehicle  Trajectories*   Philip  Pecher,  Michael  Hunter,  and   Richard  Fujimoto   Georgia  Ins;tute  of  Technology   *  Supported  by  AFOSR  Grant  FA9550-­‐13-­‐1-­‐0100  

Outline  

•  Preliminaries  and  Problem   Descrip;on   •  Simula;on  Algorithm  (superimposed   simula;ons)   •  Experimental  Evalua;on  

Mo;va;ng  Problem:  Vehicle  Tracking   •  Track  a  target  vehicle  in  a  complex  urban   environment   •  Do  not  have  con;nuous  monitoring;   repeatedly  acquire  and  reacquire  target   vehicle   •  Fixed-­‐posi;on  sensors  (cameras)  augmented   with  mobile  sensors,  crowd-­‐sourced   informa;on   •  Assume  target  is  not  evasive  

DDDAS  Solu;on  Approach   Adapt:  reposi;on  sensors   or  target  data  queries  in   light  of  predicted   loca;ons   ?  

?  

Sense:  obtain  loca;on  of   target  vehicle  from  fixed   or  mobile  sensors,   crowd-­‐sourced  data,  etc.  

?  

Predict:  construct  a  probability  map   indica;ng  the  likelihood  the  target   vehicle  will  be  at  different  loca;ons   at  some  ;me  in  the  future  

Predic;on  Using  Replicated  Simula;ons   Approach   •  Analy;cs  for  des;na;on  predic;on  [Pecher  et  al.,   2014]   •  Use  replicated  simula;ons  to  predict  possible   loca;ons  at  ;me  T+∆T  based  on  alternate  routes   the  vehicle  might  take  (or  other  varia;ons  of  target   vehicle  behavior)   –  K  replica;ons;  iden;cal  except  for  target  vehicle  behavior  

Goals   •  Accelerate  execu;on  of  replica;on  simula;ons   •  Produce  exactly  the  same  results  as  a  brute-­‐force   replicated  simula;on  experiment  

Observa;ons   •  Much  of  the  computa;on  among  the  different   replica;ons  will  be  the  same  (only  the  target   vehicle  varies);  these  computa;ons  need  only   be  performed  once   •  Only  the  state  of  the  target  vehicle  is  of   interest;  errors  in  the  simula;on  that  do  not   impact  the  state  of  the  target  vehicle  can  be   tolerated!  

Related  Work   •  Standard  Clock  for  replicated  simula;ons  [Vakili   1992]   –  Exploits    shared  computa;ons  among  replica;ons  

•  Staged  Simula;ons  [Walsh,  Sirer  2003]  

–  More  general  computa;on  sharing  among  simula;ons  

•  Cloning  parallel  and  distributed  simula;ons   [Hybinede,  Fujimoto  2001;  Chen,  Turner,  Cai,   Gan,  Low  2005;  Chen  2012]   –  Complementary;  improve  efficiency  of  crea;ng   replica;ons  

•  Updateable  Simula;ons  [Ferenci,  et  al.  2002]  

–  Requires  genera;ng  a  log  of  the  simula;on  prior  to   execu;on  

Overview  of  Algorithm   •  Preliminaries   –  One  target  vehicle  per  replica;on;  called  a  Virtual  Vehicle  (VV)   –  Other  vehicles  called  Model  Vehicles  (MVs)  

•  Create  one  superimposed  execu2on  including   –  One  execu;on  of  MVs;  these  behave  oblivious  to  the  VVs   –  K  VVs;  each  VV  is  oblivious  to  other  VVs,  but  interacts  with   MV  in  accordance  with  the  model  rules  (e.g.,  avoid  collisions)  

•  The  behavior  of  some  MVs  are  wrong  (because  they   ignore  the  VVs);  tag  these  MVs  as  hazards   –  Hazards  do  not  necessarily  compromise  simula;on  results   because  we  are  only  interested  in  the  posi;on  of  VVs  

•  If  a  hazard  does  affect  a  VV,  the  posi;on  of  the  VV  is   incorrect;  resort  to  rollback  and  cloning  a  new  replica;on  

Nagel-­‐Schreckenberg  Transporta;on  Model   Cellular Automata 1.  The  speed  of  the  vehicle  is  incremented  if  the  vehicle  is  not   at  the  maximum  speed.     2.  The  current  vehicle  speed  is  compared  to  the  number  of   empty  cells  in  front  of  the  vehicle.  If  the  number  of  empty   cells  is  smaller,  the  speed  is  reduced  to  the  empty  cell  count   (in  order  to  avoid  a  poten;al  collision).     3.  If  the  vehicle's  speed  is  posi;ve,  it  is  decremented  with   probability  p  (this  is  a  predefined  parameter).     4.  The  vehicle  advances  forward  by  the  number  of  cells  equal   to  the  corresponding  speed.    

Superimposed  Simula;on   Overlay  replicated  simula;ons  so  common  computa;ons  are  only   performed  once     MV  movement  is  oblivious  to   (ignores)  virtual  vehicles  

Hazards  and  Tags  

Hazard  (tag=1)  

•  A  hazard  is  a  MV  whose  state  is  incorrect  in  one  or  more  replica;ons   •  Hazards  do  not  compromise  the  simula;on,  so  long  as  they  do  not   impact  the  state  of  the  target  vehicle  (virtual  vehicle)   •  Each  hazard  is  tagged  to  indicate  incorrect  replica;ons  

Algorithm  Rules   •  In  the  superimposed  simula;on  

–  MVs  interact  with  other  MVs  but  ignore  VVs,  except  for   hazard  detec;on   –  VVs  interact  with  MVs,  as  usual  

•  Hazard  crea;on:  If  a  MV  MV1  interacts  with  a  VV   VVk,  then  MV1  is  tagged  as  a  “hazard”  for   replica;on  k  (indicates  the  superimposed   simula;on  is  in  error  for  replica;on  k)   •  Hazard  spread:  If  a  second  vehicle  MV2  interacts   with  MV1,  MV2  is  also  tagged  as  a  hazard  in   replica;on  k   •  Rollback:  If  a  VV  interacts  with  a  tagged  MV,  we   must  roll  back,  replicate  (clone)  the  simula;on  

Outline  

•  Preliminaries  and  Problem   Descrip;on   •  Simula;on  Algorithm  (superimposed   simula;ons)   •  Experimental  Evalua;on  

Experimental  Evalua;on   •  Compare  brute-­‐force  replica;on  approach   with  superimposed  simula;ons  for  NS  traffic   model   •  Two  road  networks   –  Manhadan-­‐style  grid  with  long  bi-­‐direc;onal  road   segments  (450  m)   –  Road  network  based  on  a  sec;on  in  Atlanta   Georgia  (US)  (mean  road  segment  length:  135  m)  

•  Each  simula;on  runs  for  500  ;mesteps.  

Vehicle  Movement   •  Vehicles  take  the  shortest  path  to  randomly  selected   intersec;ons.   •  Vehicles  are  randomly  generated  at  the  outermost  points  of   the  map  boundary.   –  “Low  traffic”:  0.1  spawn  probability  per  source  per  ;ck   –  “High  traffic”:  0.5  spawn  probability  per  source  per  ;ck  

•  Default  values  for  Model  Vehicles:   –  N-­‐S  decelera;on  parameter  p  =  0.5   –  Maximum  speed  3  cells/;mestep  

•  Varying  parameters  for  Virtual  Vehicles  (up  to  64   configura;ons):  

–  Decelera+on  Prob.  =     –  Max.  Speed  =    cells/;mestep   –  Des+na+on  =    

Manhadan  Grid  

  •  Intersec;on-­‐to-­‐intersec;on  distance  =  100   cells   •  Bidirec;onal  2-­‐lane  roads   •  Vehicles  spawn  at  the  red  circles  in  the  above   illustra;on.  

Execu;on  Time:  Manhadan  Network   120  

100  

Speedup=1.65  

CPU  Time  (s)  

80  

0.1  VVEM   60  

0.1  BFEM   0.5  VVEM   0.5  BFEM  

40  

Speedup=5.8  

20  

0   1  

2  

4  

8  

16  

32  

64  

Number  of  Replica+ons  

•  Brute  force  replica;ons  vs.  superimposed  simula;ons   •  Speedup  increases  with  more  replica;ons   •  Beder  speedup  in  networks  with  light  traffic  loads  

Speedup  vs.  Rela;ve  Speed  Differences   18   16   14   12   10  

High  Decel,  Low  Speed   Low  Decel,  Low  Speed  

8  

High  Decel,  High  Speed   Low  Decel,  High  Speed  

6  

(VV  speed)  

4   2   0   High  Traffic,  V=5  

High  Traffic,  V=3  

Low  Traffic,  V=5  

Low  Traffic,  V=3  

•  Beder  speedup  with  lower  maximum  vehicle  speeds   •  Beder  speedup  when  VVs  are  “fast”  rela;ve  to  MVs  

Atlanta  Traffic  Scenario  

     

Execu;on  Time:  Atlanta  Network   18   16   14  

CPU  Time  (s)  

12   10  

0.1  VVEM   0.1  BFEM  

8  

0.5  VVEM   0.5  BFEM  

6   4   2   0   1  

2  

4  

8  

16  

32  

64  

Number  of  Replica+ons  

Results  comparable  to  synthe;c  “Manhadan”  network  

Atlanta:  Speedup  vs.  Rela;ve  Speed  Differences  

14  

12  

10  

High  Decel,  Low  Speed  

8  

Low  Decel,  Low  Speed   High  Decel,  High  Speed  

6  

Low  Decel,  High  Speed   4  

2  

0   High  Traffic,  V=5  

High  Traffic,  V=3  

Low  Traffic,  V=5  

Low  Traffic,  V=3  

Conclusions  and  Open  Ques;ons   Conclusions   •  Superimposed  simula;ons  provides  a  means  to  accelerate   replicated  execu;ons  of  similar  NS  traffic  simula;ons   •  Up  to  order-­‐of-­‐magnitude  speedup  observed   •  Performance  depends  significantly  on  specifics  of  the   model  (traffic  conges;on,  speed  of  target  rela;ve  to  other   vehicles,  etc.)     Open  Ques;ons   •  Approximate  techniques   •  Generaliza;on  to  other  types  of  traffic  models   •  Generaliza;on  to  other  applica;ons   •  Incorpora;on  of  incremental  replica;on  (cloning)  concepts   •  Parallel  implementa;on   •  Extension  to  tracking  mul;ple  vehicles