Classification and Clustering via Dictionary Learning with Structured Incoherence and Shared Features Ignacio Ramirez, Pablo Sprechmann, and Guillermo Sapiro University of Minnesota
Pablo Sprechmann
0/ 14
Pablo Sprechmann
1/ 14
Sparse Models
Pablo Sprechmann
2/ 14
Sparse Models
Pablo Sprechmann
2/ 14
Sparse Models
Pablo Sprechmann
2/ 14
Sparse Models
Pablo Sprechmann
2/ 14
Learning a Sparse Model (A∗ , D∗ ) = arg min A,D
X x∈C
kx − Dak2 + λ kak1 | {z } | {z } data fitting
regularizer
• Atoms satisfy kdi k1 = 1 • Usual sparsity-inducing regularizers: • `0 “norm”: ψ(aj ) = kaj k0 • `1 norm: ψ(aj ) = kaj k1
See also: SPAMS software. Pablo Sprechmann
3/ 14
Sparse Models for Supervised Classification • Classes: {C1 , C2 , . . . , Cc } • Training:
xi1 , . . . , xini ⊂ Ci
Pablo Sprechmann
4/ 14
Sparse Models for Supervised Classification • Classes: {C1 , C2 , . . . , Cc } • Training:
xi1 , . . . , xini ⊂ Ci
Proposed Method 1
Learn (fit) a dictionary Di to represent samples from class Ci .
2
Use representation cost as discriminant function R(x, Di ) = min ||x − Di a||22 + λ||a||1 a | {z } | {z } Fitting term Complexity term
3
Assign sample to class with smallest R(x, Di ) Class(x) = arg min R(x, Di ) i
See also: [Mairal CVPR ‘08]. Pablo Sprechmann
4/ 14
Classification Results
Classification Error Rate (%). Dataset MNIST USPS
[Mairal et al. NIPS ‘08] Disc. Rec. 1.0 3.4 3.5 4.4
Pablo Sprechmann
Proposed 1.3 4.0
5/ 14
Promoting Cross-Incoherence
min
{Di ,Ai }i=1...c
c X X
kx − Di ak22 + λkak1
i=1 x∈Ci
Pablo Sprechmann
6/ 14
Promoting Cross-Incoherence
min
{Di ,Ai }i=1...c
c X X
kx − Di ak22 + λkak1
cross-incoherence term z X }| {
T 2
η Di Dj F +
i=1 x∈Ci
j6=i
• More incoherence leads to better discriminative power
See also: [Tropp S.P. 2006] and [ Eldar et al. TIT, Nov. 2009]. Pablo Sprechmann
6/ 14
Promoting Cross-Incoherence
min
{Di ,Ai }i=1...c
c X X
kx − Di ak22 + λkak1
cross-incoherence term z X }| {
T 2
η Di Dj F +
i=1 x∈Ci
j6=i
• More incoherence leads to better discriminative power • Shared Features:
See also: [Tropp S.P. 2006] and [ Eldar et al. TIT, Nov. 2009]. Pablo Sprechmann
6/ 14
Sparse Models for Clustering
Pablo Sprechmann
7/ 14
Sparse Models for Clustering
Pablo Sprechmann
7/ 14
Sparse Models for Clustering
See also: L1 graph [Cheng TIP, Apr. 2010] and Subspace Clustering [Elhamifar CVPR ‘09]. Pablo Sprechmann
7/ 14
Sparse Models for Clustering
See also: L1 graph [Cheng TIP, Apr. 2010] and Subspace Clustering [Elhamifar CVPR ‘09]. Pablo Sprechmann
7/ 14
Sparse Models for Clustering
See also: L1 graph [Cheng TIP, Apr. 2010] and Subspace Clustering [Elhamifar CVPR ‘09]. Pablo Sprechmann
7/ 14
Sparse Models for Clustering • Energy Minimization Problem • Lloyd’s type of algorithm for minimizing: R(x,Di )
c X z }| { X X
DTi Dj 2 min kx − Di ak22 + λkak1 + η min F
Ci ,{Di }
i=1 x∈Ci
a
Pablo Sprechmann
i6=j
8/ 14
Object Detection
• Detection based on local descriptors. • Learn Dictionaries for SIFT feature vectors.
See also: [Mairal CVPR ‘08,Yang CVPR ‘09].
Pablo Sprechmann
9/ 14
Texture Segmentation
See also: [Peyre JMIV, May 2008, Mairal et al. CVPR ‘08]. Pablo Sprechmann
10/ 14
Extensions
Pablo Sprechmann
11/ 14
Extensions
Pablo Sprechmann
11/ 14
Extensions
Pablo Sprechmann
11/ 14
Source Separation: Hierarchical models
Pablo Sprechmann
11/ 14
Source Separation: Hierarchical models
See also: [Yuan and Lin 2006, Jenatton arXive, 2009].
Pablo Sprechmann
11/ 14
Source Separation: Hierarchical models
See also: [Yuan and Lin 2006, Jenatton arXive, 2009].
Pablo Sprechmann
11/ 14
Collaborative Source Separation
Pablo Sprechmann
12/ 14
Collaborative Source Separation
min
A∈Rp×n
c
n
g=1
k=1
X X 1 kX − DAk2F + λ2 kAg kF + λ1 kak k1 2
P.Sprechmann, I. Ramirez, G. Sapiro and Y. Eldar, Arxiv 2010.
Pablo Sprechmann
12/ 14
Collaborative Source Separation Results Recovery of (two) superimposed textures
Pablo Sprechmann
13/ 14
Collaborative Source Separation Results Recovery of (two) superimposed textures
Recovery of superimposed numbers with missing information
Pablo Sprechmann
13/ 14
Conclusions
• Framework for classification and clustering rich data via dictionary
learning • Simple metric derived from sparse modeling • Inclusion of incoherence and shared features detection • Extension to source separation
Pablo Sprechmann
14/ 14
Conclusions
• Framework for classification and clustering rich data via dictionary
learning • Simple metric derived from sparse modeling • Inclusion of incoherence and shared features detection • Extension to source separation
Thank you!!
Pablo Sprechmann
14/ 14