Name__________________________________ Date_______________
Grade 7 Unit 6 1. Jeremiah wants to purchase a new skateboard and a helmet from a local sporting goods store. The helmet costs $36 and Jeremiah has a coupon for half off the original price on any skateboard. Jeremiah spends $80 altogether on his purchase of both items. What was the original cost of the skateboard? What was the cost of the skateboard after the discount? A. Original Price: $44 After Discount: $22 B. Original Price: $80 After Discount: $40 C. Original Price: $88 After Discount: $44 D. None of the above. 2. Marshall works as a dog groomer during the summer. On Wednesday, he works for 6 hours and earns $15 in tips. At the end of his shift Marshall earns $84. Which equation could be used to find how much Marshall gets paid per hour? A. 6π + $15 = $84 B. 6π + $15π = $84 C. $15π + 6 = $84 D. $15π β 6π = $84 Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 1
3. Robin, Ashley, Joy, and Christina are collecting acorns to make some fall decorations with their mom. Robin collects three times as many acorns as Ashley, and Christina has 12 more acorns than Robin. Ashley and Joy have the same number of acorns collected. If they have 156 acorns collected altogether, how many acorns does each of the four girls have? A. Robin: 36, Ashley: 13, Joy: 13, Christina: 48 B. Robin: 54, Ashley: 18, Joy: 18, Christina: 66 C. Robin: 45, Ashley: 27, Joy: 27, Christina: 57 D. None of the above. 4. Analyze the equation below: $65 + $3π = $185 Which scenario best represents the equation? A. Mark joins a gym that charges $65 per month in addition to a $3 towel fee. His total after a few months is $185. B. April and her sister rent a snow mobile for the day at the mountains. They are charged $65 for the day in addition to $3 for every mile they drive. Their total for the rental is $185. C. Sawyer charges $65 for each toy train she builds plus an additional $3 for delivery. In two weeks she makes $185 from toy train sales. D. None of the above. Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 2
5. Brandon has some change in his piggy bank. He has only quarters and dimes. He has one more than five times as many quarters than dimes. If he has a total of $5.65, what number of each coin does he have? A. 3 dimes, and 10 quarters B. 8 dimes, and 21 quarters C. 5 dimes, and 20 quarters D. 4 dimes, and 21 quarters 6. Rob is building a hexagonal garden for his mom. He wants the 1 perimeter of the garden to be 42 feet. To find how many feet each 2 side of the garden needs to be he does the following work: Step 1: 6π₯ = 42 Step 2: 6π₯ =
1 2
85 2
1
85 6
6
2
Step 3: β 6π₯ =
β
1
Step 4: 255 feet
Which statement about Robβs work is true? A. All steps are correct. B. Step 3 and Step 4 are incorrect. C. All steps are incorrect. D. Step 1 is incorrect. Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 3
7. Mia wants to purchase three items for her bedroom. She buys a fleece blanket at regular price for $16, and one red and one blue comforter both marked half off the original price. The blue comforter was $6 more than the red comforter before the discount. She spent a total of $73. Find the price of each comforter. A. Red comforter: $27, Blue comforter: $33 B. Red comforter: $30, Blue comforter: $36 C. Red comforter: $27, Blue comforter: $30 D. Red comforter: $22, Blue comforter: $28 8. Tracy wants to buy a new bicycle to ride on some trails with her friends. She goes to her local sporting goods store and purchases a new bicycle for $459 after tax. She paid 8% sales tax. Which of the following statements are false? A. One way to find the amount of sales tax is to multiply the original price by 8. B. The sales tax on the bicycle was $34. C. One way to find the original price of the bicycle is to write and solve the equation π β 8π = $459. D. The original price of the bicycle was $425.
Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 4
9. Shelly bought a new novel at a bookstore. The novel is 535 pages long and she has read 175 pages so far. If Shelly reads 90 pages of her novel per day, how many more days will it take her to finish the novel? A. 4 days B. 8 days C. 6 days D. None of the above.
10. Cory and his dad are cutting some pieces of lumber. They count 6 pieces of lumber and measure each at 66 inches long. For a project 1 they are working on they need to cut the lumber into blocks 5 2 inches long. How many blocks can Cory and his dad cut from the lumber they have? A. 12 blocks B. 72 blocks C. 33 blocks D. None of the above.
Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 5
11. The width of a rectangle is half of its length. If the perimeter of the rectangle is 54 feet, find the length and the width.
Check if each statement about the rectangle is correct. A. The length of the rectangle is equal to π and the width is equal to 2π.
Y
N
B. Two sides of the rectangle are equal to π and 1 two sides of the rectangle are equal to π.
Y
N
C. The length of the rectangle is equal to 18 feet and the width is equal to 9 feet.
Y
N
D. The equation that can be used to find the length and the width is π + 2π = 54 ππππ‘.
Y
N
2
Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 6
12. Match each statement with the correct equation.
A car is rented for $40 per day plus $0.25 per mile driven. The total for the one day rental is $45.50. Karen buys four t-shirts for $45.50. The three print t-shirts each cost 4 times the price of the solid t-shirt.
_____
A. π + 0.07π = 45.50
_____
B. π + 4π = 45.50
Finn buys a toy boat for $45.50 including tax. He was charged 7% _____ sales tax on the original price of the toy boat. Nick buys a sweater and a jacket for $45.50. The jacket costs 4 times as much as the sweater.
_____
Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 7
C. π + 3(4π ) = 45.50
D. 40 + 0.25π = 45.50
13. Ruby and her dad are building two gardens on their land. The 1 perimeter of the pentagonal garden they want to build is 47 feet. 2
1
The perimeter of the hexagonal garden they want to build is 61 2 feet. Determine if each statement is true or false.
A. The equation to find the length of each side in the pentagonal garden is equal to 6π₯ = 1 47 .
T
F
T
F
C. The equation to find the length of each side in the hexagonal garden is equal to 5π₯ = 1 61 .
T
F
D. The length of each side of the hexagonal 1 garden is going to be 10 feet.
T
F
2
B. The length of each side of the pentagonal 1 garden is going to be 9 feet. 2
2
4
Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 8
14. Carly is
8 11
2
3
3
4
the height of her mother, the height of her father, 5
the height of her older sister, and the height of her older brother. 6 Carly is 48 inches tall. Draw a line to connect each person with their correct height.
A. Carlyβs Mother
M. 64 inches
B. Carlyβs Father
N. 57.6 inches
C. Carlyβs Older Sister
O. 66 inches
D. Carlyβs Older Brother
P. 72 inches
Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 9
15. For both scenarios, use the terms from the number bank to fill in the blanks for the equation and the figure. Terms in the number box may be used more than once. Then find the solution to each problem in simplest form. Number bank 1
2 ( π) 2
π
(π β 2) 1 2
π
A. Some volunteers are building a playground at a local park. Their plan is to first build a rectangular sandbox with a 1 perimeter of 162 ft. The width of the sandbox is the length. 2
2π +
=
162ππ‘
Find the length and the width of the sandbox.
Answer: ______________________ Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 10
B. Tracy and her sister are planting some flowers along the sides of their grandmotherβs garden. The garden is in the shape of an isosceles triangle and has a perimeter of 25ft. The length of the shorter side of the triangle is 2 ft less than the length of one of the longer sides. What are the lengths of the sides of the garden?
2π +
=
Answer: ______________________
Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 11
25ππ‘
16. Steven wants to buy some new skis and ski poles. He goes to his local sporting goods store and purchases a set of skis for $235 and the ski poles for half of their original price. Steven spends $265 altogether for his items. What was the original price of the ski poles before the discount? What was the discounted price of the skis? A. Create a tape diagram to represent the problem.
B. Write the equation that best represents the scenario and your tape diagram. Answer: _________________________ C. Using your equation, find the original price of the ski poles and the price after the discount. Show your work in detailed and organized steps.
Answer: Discounted price: ________________ Original price: ________________
Copyright Β© Swun Math Grade 7 Unit 6 Assessment, Page 12