Supporting Information
Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film C. Justin Raja, Byung Chul Kima, Won-Je Choa, Won-gil Leea, Sang-Don Jung b, Yong Hee Kimb, Sang Yeop Parkc, Kook Hyun Yua*
a
Department of Chemistry, Dongguk University-Seoul, Jung-gu, Seoul-100715, South Korea.
b
Electronics and Telecommunications Research Institute, Synapse Device Creative Research Centre, 218 Gajeong-ro, Yuseong-gu, Daejeon, 305-700, South Korea c
Department of Ceramic Engineering, Gangneung-Wonju National University, Gangneung210702, South Korea.
*Corresponding author, E-mail:
[email protected] (K. H. Yu); Tel.: +82 2 2260 3709
S1
Figure S1 a) SEM image of 4000 grit polymer lapping film surface; b) Low magnification SEM image of GF coated 4000 grit lapping film representing large surface coating; c) SEM image of GF coated 1500 grit lapping film; d) SEM image of GF coated 8000 grit lapping film; e) SEM image of GF coated 15000 grit lapping film and f) Cross sectional SEM image of GF/PPy coated 4000 grit lapping film.
S2
Figure S2a) Galvanostatic curve showing the deposition of polypyrrole over GF coated 4000 grit polymer lapping film and b) Low magnification SEM image of polypyrrole deposited GF coated 4000 grit lapping film representing large surface coating.
Figure S3 a) XRD pattern of graphite, polymer lapping film, GF coated and GF/PPy coated lapping film; b) ATR-FTIR spectrum of lapping film surface.
S3
Figure S4 a) CV curves of GF electrode in 1M H2SO4 electrolyte for different scan rates, b) CV curves of GF electrode in 1M Na2SO4 electrolyte for different scan rates, c) CV curves of GF/PPy electrode in 1M Na2SO4 electrolyte for different scan rates and d) CV curves of GF flexible full cell for different scan rates.
S4
Figure S5 a) CV curves of GF coated over 1500, 4000, 8000, 15000 grit polymer lapping film in 1M H2SO4 electrolyte at 100 mV s-1 scan rates. b) CV curves of GF planar cell for different scan rates.
Figure S6 a) CV curves showing the comparison of PPy, GF and GF/PPy coated lapping film a) in 1M H2SO4 electrolyte and b) full cell at 25 mV s-1 scan rates.
S5
Figure S7 a) Galvanostatic charge/discharge curves of GF electrodes in 1M H2SO4 electrolyte for various discharge current densities, b) Galvanostatic charge/discharge curves of GF/PPy electrodes in 1M H2SO4 electrolyte for various discharge current densities, c) Galvanostatic charge/discharge curves of GF flexible full cells at various discharge current densities and d) Galvanostatic charge/discharge curves of GF/PPy flexible full cells at various discharge current densities. e) Galvanostatic charge/discharge curves of GF and f) GF/PPy planar cells at various discharge current densities.
S6
Table S1. The comparison table of areal capacitance for some flexible solid state supercapacitors
SCs
Reference
Area capacitance (mF cm-2)
GF/PPy in lapping film
23
Present work
GF in lapping film
7
Present work
Pen Ink/fiber
19.5
S1
2D SnSe2
0.44
S2
Nanowire/fiber
2.4
S3
RGO/fiber
0.726
S4
CNT/cellulose
20
S5
CNT/MnO2
3.01
S6
G-Gel/NF
45.6
S7
Graphene/cellulose
46
S8
Graphite/paper
2.3
S9
MWCNT/fiber
3.01
S10
References S1. Fu, Y.; Cai, X.; Wu, H.; Lv, Z.; Hou, S.; Peng, M.; Yu, X.; Zou, D. Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage. Adv. Mater. 2012,
24, 5713-5718. S2. Zhang, C.; Yin, H.; Han, M.; Dai, Z.; Pang, H.; Zheng, Y.; Lan, Y.; Bao, J.; Zhu, J. Two-Dimensional Tin Selenide Nanostructures for Flexible All-Solid-State Supercapacitors.
ACS Nano 2014, 8, 3761-3770.
S7
S3. Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M.; Wang, Z. L. Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage. Angew. Chem. Int. Ed. 2011, 50, 1683-1687. S4. Li, Y.; Sheng, K.; Yuan, W.; Shi, G. A High-Performance Flexible Fibre-Shaped Electrochemical Capacitor Based on Electrochemically Reduced Graphene Oxide. Chem.
Commun. 2013, 49, 291-293. S5. Kang, Y. J.; Chun, S. J.; Lee, S. S.; Kim, B.Y.; Kim, J. H.; Chung, H.; Y. Lee, S.; Kim, W. All-Solid-State Flexible Supercapacitors Fabricated with Bacterial Nanocellulose Papers, Carbon Nanotubes, and Triblock-Copolymer Ion Gels. ACS Nano 2012, 6, 6400-6406. S6. Choi, C.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepro, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible Supercapacitor Made of Carbon Nanotube Yarn with Internal Pores.
Adv. Mater. 2014, 26, 2059-2065. S7. Chen, J.; Sheng, K.; Luo, P.; Li, C.; Shi, G. Graphene Hydrogels Deposited in Nickel Foams for High-Rate Electrochemical Capacitors. Adv. Mater. 2012, 24, 4569-4573. S8. Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J.; Cheng, H. M. Graphene-Cellulose Paper Flexible Supercapacitors. Adv. Energy Mater. 2011, 1, 917-922. S9. Zheng, G.; Hu, L.; Wu, H.; Xie, X.; Cui, Y. Paper Supercapacitors by a Solvent-Free Drawing Method. Energy Environ. Sci. 2011, 4, 3368-3373. S10. Ren, J.; Li, L.; Chen, C.; Chen, X.; Cai, Z.; Qiu, L.; Wang, Y.; Zhu, X.; Peng, H. Twisting Carbon Nanotube Fibers for Both Wire-Shaped Micro-Supercapacitor and MicroBattery. Adv. Mater. 2013, 25, 1155-1159.
S8