IITJEE - 2013

Report 2 Downloads 46 Views
Vidyamandir Classes

Solutions to JEE Mains/Test Series - 9/IITJEE - 2013 [CHEMISTRY] 1.(C)

By conservation of moles PV P1V1 PV = + 2 2 RT RT RT P×4=2×1+3×2 P = 2 atm.

2.(C)

Statement-II violates the inert pair effect. Hence it is false.

3.(A)

KMnO4 will react with FeSO4 only. 100 1 × moles = 5 × 2 × 1000 moles = 1 χ FeSO4 = 1/ 3

4.(D) 5.(D)

Only Cl2 is oxidsing among the given options Cl

∴ 6.(D)

2 → KMnO K 2 MnO 4  4

∆S = n C v n

T2 V + n R n 2 T1 V1

= nC v n2 + n R n

1 2

= (C v − R)  n 2 7.(D)

P-anthranilic acid has less acidic nature due to the +M effect of − NH 2 group.

 2NH 3 (g) N 2 (g) + 3H 2 (g) 

8.(B)

t=0

a

t = t eq

a 2

PNH 3

3a

3a 2 a P = P= . 3a 3

a

9.(C)

→ H 3 BO3 + 3HBF4 4BF3 + 3H 2O 

10.(D)

[H + ] =

11.(B)

Ka1C1 + Ka 2C2 (Learn as a result)

=

1.8 × 10−5 × 0.01 + 6.3 × 10−5 × 0.01

=

8.1 × 10−7 = 9 × 10−4 .

Cr2 O27 − on reduction converts to Cr+3 which is green in colour.

VMC/JEE-2013/Solutions

1

JEE Mains/Test Series-9/ACEG

Vidyamandir Classes n ( n + 2 ) = 1.73 = 3

12.(C)

n (n + 2) = 3 n = no. of unpaired e−s = 1 v = 4s2 3d3. Hence Vanadium must exist in the form V4+ compound is VCl4 ⊕

13.(C)

AgNO3 → AgCl ↓ + CH 2 = CH − C H 2 Allylic carbocation. CH 2 = CH − CH 2 − Cl 

14.(A)

→ Mg ( NH 4 ) PO 4 + Na 2SO4 + H 2O . MgSO 4 + NH 4 OH + Na 2 HPO 4 

15.(C)

P + I2 Mg / Ether HCHO H 2O → A →  → C  →D CH 3 − CH 2 − OH  B 

is CH 2 − CH 2 − I

(A)

is CH 3 − CH 2 − Mg − I

(B) ⊕

is CH 3 − CH 2 − CH 2 − O M gI (D)

(C)

is CH 3 − CH 2 − CH 2 − OH

16.(B)

17.(B)

O O || || CH 3 − C − CH 2 − C − CH 2 − CH 3 Most acidic hydrogen (Active methylene group)

18.(D) NF3 dipole > NH3 dipole.

19.(D) R.D.S. of cannizaro involves transfer of H − ion to the carbonyl group.

20.(A)

O O || || → R − C − Nu + Z − R − C − Z + Nu −  Leaving group capacity of Cl − is maximum among the given options hence & fastest reaction when Z = Cl.

21.(C) Both (1) & (2) contain chiral carbon will undergo SN2 reaction with alc. KCN, hence inversion. 22.(B)

π = iCRT

0.75 = 2.47 × Moles = 23.(A)

E=

1 = 0.03 30

CZ2

εH ε

moles × 0.0821 × 300 2.5

Be3+

n2 =

2 Z2H n Be3+

n 2H

Z2 3+ Be

=

1 2

1

×

22

4

2

=

1 4

24.(D) Graphite: free e − are spread out between the structure & thus graphite is conducting. 25.(D) V1 = volume for complete neutralization of Na2CO3. V2 = Volume for complete neutralization of NaHCO3. V1 =x 2 V1 + V2 = x + y Hence V2 = y − x

VMC/JEE-2013/Solutions

2

JEE Mains/Test Series-9/ACEG

Vidyamandir Classes 26.(D)

− → Cl(g) is exothermic, rest all endothermic. Cl(g) + e − 

27.(D)

28.(C) Metal oxides an basic (or more ionic character ≈ more basic). TiO > VO > CrO > FeO ∴ 29.(C)

dx = k[A]2 dt  dx  log   = log k + 2 log[A]  dt  y = 2x + log k On comparing with y = mx + c. Where m ≡ slope

c ≡ constant 30.(A)

4r = a 2 r=

2 a 4

Solutions to JEE Mains/Test Series - 9/IITJEE - 2013 [PHYSICS] 31.(C) A crystal structure is composed of a unit cell, a set of atoms arranged in a particular way; which is periodically repeated in three dimensions on a lattice. The spacing between unit cell in various directions is called its lattice parameters or constants. Increasing these lattice constant will increase or widen the band-gap (Eg), which means more energy would be required by electrons to reach the conduction band from the valence band. Automatically Ec and Ev decreases. 32.(D)

K = K1 + K 2 +

T = 2π

33.(B)

v1 t

v2 t

34.(A)

=

K3 K 4 60 × 30 = 50 + 30 + = 100 N / m K3 + K4 90

m 0.01 π = 2π = Hz . 100 50 K

d1 − ρ d2 − ρ



0.18 20 − 2 = 10 − 2 v2



v 2 = 0.08 m / s t

t

C ||E × B & CB = E in magnitude.

As

C = 3 × 108 iˆ and E = 720 ˆj

35.(C)

 300 − 0  10,000 = 9500    300 − v 

36.(B)

Only electric force acts on the particle.

B = 2.4 × 10−6 kˆ

⇒ ⇒

300 − v = 285 ⇒ v = 15 m / s

37.(C) 38.(A) Lowest frequency = HCF of 420 Hz & 315 Hz = 105 Hz.

VMC/JEE-2013/Solutions

3

JEE Mains/Test Series-9/ACEG

Vidyamandir Classes 39.(D)

φ = BAN sin ωt

ε =−

dφ = − BAN ω cos ωt dt

40.(B)

ε =−

dφ = − ( 20t − 50 ) = − 10v at t = 3s dt

41.(B)

D1 is not conducting but D2 is conducting 12 =2A i= ⇒ 4+2

42.(B)

Energy of proton = 8 × 7.06 − 7 × 5.6



ε m = BAN ω

= 17.28 MeV

d 2v dx

2

and

= 3x 2 − 1 < 0 for x = 0

d 2v





x3 − x = 0

⇒ x = 0 or x = ± 1

x = 0 is a point of maximum for V

= 3x 2 − 1 > 0 for x = ± 1

dx 2

dv =0 dx



43.(A) K.E. is maximum when P.E. is minimum



x = ± 1 are points of minima for V

1 1 −1 − = J at x = ± 1 4 2 4



minimum potential energy =



 −1  9 maximum KE = 2 −   =  4  4

9 1 2 = mvmax & m = 1 kg ⇒ 4 2



vmax =

3 m/s 2

44.(C) Let Q be total charge on the two spheres & let q1 & q2 be charges on A & B respectively in equilibrium. (rA = 1mm, rB = 2mm) q1 q2 Q 2Q q1 + q2 = Q and = . q1 = and q2 = ⇒ ⇒ 4π ∈0 rA 4π ∈0 rB 3 3

E1 / E2 = q1 / rA2 : q2 / rB2 = 1 / 3 :

45.(A)

µR < µB



= 2 :1

or for small angled prism D = A ( µ − 1)

(A)

46.(D) 48.(A)

( 2 )2

  A + D  sin     2  ∵ µ = sin A / 2    

⇒ D1 < D2

Ans.

2/3

47.(C)

v2 1 ∝ n R R

T =



1+ 2π R ∝ R V

v∝

n −1 2

1 n −1) / 2 ( R



T ∝ R

n +1 2

H 49.(D)

50.(B)

T2

K



x f = 1/3

2K

H =



Ans.

(D)



Ans.

(B)

4x

| ∆P | = E / C − ( − E / C ) = 2 E / C

VMC/JEE-2013/Solutions



T1

4

KA (T2 − T1 ) T2 − T1 = x 4x 3x + 2 KA KA

JEE Mains/Test Series-9/ACEG

Vidyamandir Classes ⇒ the object is placed at the centre of the equivalent mirror.

51.(A) u = v

1 =−2 Fm

 1.5 1  1  1 − 1  −   + /2 1 ∞ − 30 − 30      



Fm = − 10 cm .

R = | 2 Fm | = 20 cm 6 = 4A ( 2||6 ) + 1.5 ||3

52.(C)

i=

53.(A)

X 20 4X x ; = = Y Y 80 100 − x

54.(B)

x = 50 cm

Let  : length of the wire ; R : radius in first case; r : radius in second case. ⇒ 2π R =  & n(2π r ) = 

B= B' = 55.(B)



T = 2π

µ0i 2R

µ0 π i

=



n µ0i n 2 µ0 π i = = n2 B 2r 

I MB

where

I: moment of Inertia =

m 2 12

M : pole strength × 

I' =

m ( / s) 12

2

= I / 9 ; M ' = ( pole strength remain same ) × 3 ×  / 3 M

I /9 T = = 2 / 3 sec M .B 3 56.(D) As P.d across L & C are out of phase.



T ' = 2π

57.(B)

induced current = −

58.(C)

ω=

59.(B)

ε =

1 = LC

( change influx ) × no of

1 L' (2C )

(

turns

total resistance × time



 (W − W1 )  =− 2 × n ÷ t R + 4 R )   (

= −

n (W2 − W1 ) 5RT

L' = L / 2

)

1 1 2 ∆ω2 = × 0.2 × 10−4 × 5 × (1) = 5 × 10−5V 2 2 = 50 µ v

60.(A)



VMC/JEE-2013/Solutions

truth table of OR gate.

5

JEE Mains/Test Series-9/ACEG

Vidyamandir Classes

Solutions to JEE Mains/Test Series - 9/IITJEE - 2013 [MATHEMATICS] 61.(D) For the graph to touch x-axis, the polynomial y = x 2 − 2 px + p + 1 would have to be a perfect square. Therefore,

(

)

p 2 = p + 1 , or p 2 − p − 1 = 0 , p = 1 ± 5 / 2 .

62.(C)

Z1 = ( 8 sin θ + 7 cos θ ) + i ( sin θ + 4 cos θ ) Z 2 = ( sin θ + 4 cos θ ) + i ( 8 sin θ + 7 cos θ ) Z1 = x + iy  where x = ( 8 sin θ + 7 cos θ ) and y = ( sin θ + 4 cos θ ) Z 2 = y + ix 

Hence,

(

Z1 .Z 2 = ( xy − xy ) + i x 2 + y 2

)

= a + ib ⇒ a = 0 ; b = x 2 + y 2

x 2 + y 2 = ( 8 sin θ + 7 cos θ ) + ( sin θ + 4 cos θ ) 2

Now,

2

= 65 sin 2 θ + 65 cos 2 θ + 120 sin θ cos θ

= 65 + 60 sin 2θ

( a + b )max = 125

Hence, 63.(C)

(

)

( )

| 2 a × b | + 3 a .b

= 2|a||b|sin θ + 3 |a||b|cos θ , where θ is angle between a and b = 12 sin θ + 18 cos θ ≤ 122 + 182 = 6 13 64.(B)

Line ax + y = 0 and x + by = 0 intersect at O(0, 0).

ax + y = 0

If AB subtends right angle at O(0, 0), then ax + y = 0 and x + by = 0 are perpendicular.



( −a )  −

1  = −1  b



a+b = 0

65.(D) The first two columns of first determinant are same as first two rows of second. Hence, transpose the second. Add the two determinants and use C1 → C1 + C3 . It gives D = 0.

66.(D)

 dr   dh   dr   dt  = c and h = ar + b ; also  dt  = 3  dt  (given)      

VMC/JEE-2013/Solutions

6

JEE Mains/Test Series-9/ACEG

Vidyamandir Classes ∴

a

dr dr =3 ⇒ a=3 dt dt

Hence, h = 3r + b When

r =1 ; h = 6 ⇒ 6 = 3+b ⇒ b = 3



h = 3 ( r + 1)

(

V = π r 2 h = 3π r 2 ( r + 1) = 3π r 3 + r 2

(

)

)

dV dr = 3π 3r 2 + 2r dt dt where

 dV  r =6;  = 1 cc / sec  dt   dr   dr  1 = 3π (108 + 12 )   ⇒ 360π   = 1 dt    dt 

Therefore,

 dV  Again when r = 36 ,  =n  dt 

)

(

2  dr  n = 3π 3 ( 36 ) + 2.36    dt 

n = 3π . 36 (110 ) . (1 / 360 π ) n = 33 67.(A)

 sin 3 x a  L = lim  3 + 2 + b  x→0 x x 

= lim

sin 3 x + ax + bx3

x3

x→0

3 = lim

x→0

sin 3 x + a + bx 2 3x x2

For existence of limit 3 + a = 0



a = −3



L = lim

sin 3 x − 3 x + bx 3

x→0

=−

x

27 +b = 0 6

3

= 27 lim

t →0

sin t − t t3

(Apply LH rule to get lim

+ b = 0 ( 3x = t )

t →0

sin t − t t

3

=

−1 6



b=

9 2

68.(C) Given integral 1

=

dx

∫ ( x + cos α )2 + (1 − cos 2 α ) 0

1

=

dx

∫ ( x + cos α )2 + sin2 α 0

= =

1 x + cos α tan −1 sin α sin α 1 sin α

1 0

cos α   −1 1 + cos α − tan −1 tan sin α sin α  

VMC/JEE-2013/Solutions

7

JEE Mains/Test Series-9/ACEG

Vidyamandir Classes

69.(B)

α  −1  −1 tan cot 2 − tan ( cot α )   

=

1 sin α

=

1  −1 π α  π  −1 tan tan  −  − tan tan  − α   sin α  2 2 2    

=

1 sin α

 π α   π α   2 − 2  −  2 − α   = 2 sin α      

3 log 2 x − 1 − log 2 x + 2 > 0 ( x > 0 ) 2 3 1 ( log 2 x − 1) + > 0 2 2



log 2 x − 1 −

Let

log 2 x − 1 = t ≥ 0



log 2 x ≥ 1 ⇒ x ≥ 2



3 1 t − t2 + > 0 2 2



2t − 3t 2 + 1 > 0 ⇒ 3t 2 − 2t − 1 < 0





. . . .(i)

1 < t