IMSC Whitney

Report 4 Downloads 276 Views
What can we learn about temperature extremes from millennial-scale equilibrium climate simulations? Whitney Huang1 Joint work Michael Stein2 , Elisabeth Moyer2 , Shanshan Sun2 , and David McInerney3 Purdue University1 , University of Chicago2 , University of Adelaide3

June 8, 2016, IMSC

Overview Climate Model

Statistical Model

GCM (CCSM3)

EVA (GEV)

1000 yrs equilibrated runs

Annual max/min

CO2: 289 and 700 ppm

Return levels

Changes in temperature extremes Data length on return level estimation

Part 1: Changes in temperature extremes

Model annual extremes as GEV distributions I

Example: annual maxima at Texas grid cell

Daily Tmax (°C)

Texas 30



● ●















20 10 0 1

2

3

4

5

6

7

8

9

10

Year

I

Fit generalized extreme value (GEV(µ, σ, ξ)) distribution to annual max/min

I

r -year return level: the value whose probability of exceedance is 1r in any given year

Fit GEV to annual max California

preindustrial 700 ppm

50° N ID ●















































































































45° N 40° N 35° N

CA ●















































































TX

30° N

26

28

30

32

Annual maxima (°C)

34

120° W 110° W 100° W

90° W

80° W

70° W

Compute the r-year return level for 289 ppm climate California

preindustrial 700 ppm

26

28

20−yr RL

30

32

34

Annual maxima (°C)

o σ ˆ0 n ˆ ˆ 20 = µ RL ˆ0 − 1 − (− log (1 − 0.05))−ξ0 ξˆ0

Compute the r-year return level for 700 ppm climate California

preindustrial 700 ppm

26

28

20−yr RL

30

20−yr RL

32

34

Annual maxima (°C)

o σ ˆ1 n ˆ ˆ 20 = µ RL ˆ1 − 1 − (− log (1 − 0.05))−ξ1 ξˆ1

Compute the difference in r-year return level California

preindustrial 700 ppm

26

28

20−yr RL

∆20−yr RL

30

20−yr RL

32

34

Annual maxima (°C)

ˆ 20 − RL ˆ 20 ∆20-yr RL = RL

Warm extremes shift with summer means California percentile 0.5

28

30

32

Annual maxima (°C)

34

0.8

0.9

3

1.0



2 1 0

26

0.7

4



Change in summer mean Change in 20−yr return

10 20 100

∆20−yr RL

20−yr RL

2

20−yr RL

∆ return level (°C)

preindustrial 700 ppm

0.6

Return period (years)

ˆ = (2.9 ∗ ∗, 0.02, 0.01) (∆ˆ µ, ∆ˆ σ , ∆ξ)

Fit GEV to annual min Texas preindustrial 700 ppm 50° N ID ●













































































































45° N 40° N 35° N



CA ●















































































TX

30° N

−25 −20 −15 −10

−5

Annual minima (°C)

0

5

120° W 110° W 100° W

90° W

80° W

70° W

Cold extremes shift more than winter means Texas percentile preindustrial 700 ppm

−5

Annual minima (°C)

0

5

0.2

10 ●

0.3

0.4

0.5

Change in winter mean Change in 20−yr return

8 ●

6 4 2

Return period (years)

ˆ = (4.8 ∗ ∗, −1.1 ∗ ∗, 0.05) (∆ˆ µ, ∆ˆ σ , ∆ξ)

2

−25 −20 −15 −10

0.1

100 20 10

∆ return level (°C)

0

Fit GEV to annual min Idaho preindustrial 700 ppm 50° N ID ●













































































































45° N 40° N 35° N



CA ●















































































TX

30° N

−60

−50

−40

−30

Annual minima (°C)

−20

−10

120° W 110° W 100° W

90° W

80° W

70° W

Cold extremes shift more than winter means Idaho percentile preindustrial 700 ppm

−50

−40

−30

Annual minima (°C)

−20

−10

0.2

0.3

0.4

0.5

12 10



8 6 4 ●

2

Change in winter mean Change in 20−yr return

Return period (years)

ˆ = (11.0 ∗ ∗, 0.7 ∗ ∗, 0.03) (∆ˆ µ, ∆ˆ σ , ∆ξ)

2

−60

0.1

100 20 10

∆ return level (°C)

0

Part II: Data length on return level estimation

What if we have shorter runs or data?

Annual minima (°C)

Idaho −20

Est 1 Est 2

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

Est 19Est 20

−30 −40 −50 −60

200

400

600

800

Year

To assess the sampling error due to short runs I

divide the time series into segments

I

refit GEV to each segment, compute the changes in return levels

1000

Sampling error is large for short runs

Estimates of change in 50−year RL ∆RL50=8.7

Density

20 years data 50 years data

−3

−1

1

2

3

4

5

6

7

8

9

11

Change in 50−year RL (°C)

13

15

17

Summary Changes in temperature extremes (in our model) I

Warm extremes: mainly due to the summer mean shifts

I

Cold extremes: shifts larger than the winter mean shifts

Data length on return level estimation I

Sampling error is large for extrapolation

Things not addressed I

Is annual block size long enough?

I

Comparison of different estimation methods

Acknowledgments I

RDCEP: Center for Robust Decision Making on Climate and Energy Policy

I

STATMOS: Research Network for Statistical Methods for Atmospheric and Oceanic Sciences

I

Under revision at Advances in Statistical Climatology, Meteorology and Oceanography (ASCMO)