Induced Superconductivity in the Quantum Spin Hall Edge

Report 7 Downloads 97 Views
Induced Superconductivity in the Quantum Spin Hall Edge Sean Hart, Hechen Ren

Amir Yacoby – Harvard University

• QSHE • Fraunhofer patterns to determine Current Distribution • Crossover from bulk to edge transport as approach into the topological regime

1 0.5 0 3 2 1 0 -1 -2 -3 -8

In collaboration with: L. Molenkamp and his group. Discussions: J. Alicea, K Michaeli

-6

-4

-2

0

2

4

8

6 -6

x 10

Coupling Superconductivity to HgCdTe QW’s Sean Hart, Hechen Ren

• •

Quantum Spin Hall Effect. Coupling s-superconductor to bulk and edge modes.

Fu & Kane, PRB; Markus König et al., Science

Courtesy: J. Alicea

From Dirac to Schrödinger 𝑃𝑃2 𝑃𝑃4 𝑒𝑒ℏ 𝑒𝑒ℏ2 2 𝑉𝑉 𝐻𝐻 = + 𝑉𝑉 − + 𝜎𝜎 ⋅ 𝐸𝐸 × 𝑃𝑃 + 𝛻𝛻 2𝑚𝑚 2𝑚𝑚3 𝑐𝑐 2 4𝑚𝑚2 𝑐𝑐 2 8𝑚𝑚2 𝑐𝑐 2 Schrödinger

Mass term

Spin-Orbit

Darwin

From Dirac to Schrödinger 𝑃𝑃2 𝑃𝑃4 𝑒𝑒ℏ 𝑒𝑒ℏ2 2 𝑉𝑉 𝐻𝐻 = + 𝑉𝑉 − + 𝜎𝜎 ⋅ 𝐸𝐸 × 𝑃𝑃 + 𝛻𝛻 2𝑚𝑚 2𝑚𝑚3 𝑐𝑐 2 4𝑚𝑚2 𝑐𝑐 2 8𝑚𝑚2 𝑐𝑐 2 Schrödinger

CdTe Es

Ep

Mass term

Spin-Orbit

Darwin

From Dirac to Schrödinger 𝑃𝑃2 𝑃𝑃4 𝑒𝑒ℏ 𝑒𝑒ℏ2 2 𝑉𝑉 𝐻𝐻 = + 𝑉𝑉 − + 𝜎𝜎 ⋅ 𝐸𝐸 × 𝑃𝑃 + 𝛻𝛻 2𝑚𝑚 2𝑚𝑚3 𝑐𝑐 2 4𝑚𝑚2 𝑐𝑐 2 8𝑚𝑚2 𝑐𝑐 2 Schrödinger

Mass term

Darwin

Spin-Orbit

CdTe

HgTe

Es

Es

Ep

Ep

Mass velocity: Stronger effect in Hg vs Cd

HgTe vs CdTe - Band Structure

HgTe-CdTe Quantum Well

6.3 nm

HgTe-CdTe Quantum Well

6.3 nm

HgTe-CdTe Quantum Well

6.3 nm

x

Quantum Spin Hall Effect TiAu – Ohmic Contacts

Metal Gate – SiO2 TiAu

HgTe – Quantum Well

Majorana Fermions E TiAl – Ohmic Contacts k

Gap due to Superconductivity E Metal Gate – SiO2 TiAu

HgTe – Quantum Well

k

Gap due to inplane B field

In plane B

Experimental Evidence of Edge Modes: Quantized Conductance Vxx

µ2 0

µ1

0

µ2

µ2

µ1

µ1

µ

µ I

Quantized Conductance Vxx

µ2 0

µ1

0

µ2

µ2

µ1

µ1

µ

h RQ = 2 e µ I

σ xx

2 I e2 = = =2 Vxx RQ h

Previous Experimental Observation  Large samples show large

resistance at the gap.  Small samples (~1X1µm) show quantized conductance at the gap, indicating transport by edge states.  g: 20-50

d (nm)

L×W (μm2)

I

5.5

20.0×13.3

II

7.3

20.0×13.3

III

7.3

1.0×1.0

IV

7.3

1.0×0.5

linelastic ~ 1µm Molenkamp et al.

Quantum Spin Hall Device

Topological Insulator

Ti/Au

2 μm edge length

Ti/Au

SiO2/Ti/Au Gate

Quantum Spin Hall Measurements I

Vxx

VGate

Quantum Spin Hall Measurements I

VGate

Vxx

R < h/(2e2) Vayrynen, Goldstein, Glazman, arXiv 1303.1766 Altshuler, Aleiner, Yudson, arXiv 1306.2626

Quantum Spin Hall Measurements I

VGate

Vxx

R > h/(2e2) Vayrynen, Goldstein, Glazman, arXiv 1303.1766 Altshuler, Aleiner, Yudson, arXiv 1306.2626

Quantum Spin Hall - Comparison d (nm)

L×W (μm2)

I

5.5

20.0×13.3

II

7.3

20.0×13.3

III

7.3

1.0×1.0

IV

7.3

1.0×0.5

2 μm length

Results from Molenkamp group

Edge Resistances I

I = V1 / R1 + V5 / R5 R3

V1

V4

R2

R4

R1

R5

R8

R6

R7

V4 / R4 = V5 / R5 U1 / R1 = U 4 / R4

V5

V1  U1  V4 ⇒ I = +   × R1  U 4  R1

Edge Resistances I = V1 / R1 + V5 / R5 R3

U1

U4

R2

R4

R1

R5

R8

R6

R7

I

V4 / R4 = V5 / R5 U1 / R1 = U 4 / R4 V1  U1  V4 ⇒ I = +   × R1  U 4  R1

Edge Resistances I = V1 / R1 + V5 / R5 R3

U1

U4

R2

R4

R1

R5

R8

R6

R7

I

V4 / R4 = V5 / R5 U1 / R1 = U 4 / R4 V1  U1  V4 ⇒ I = +   × R1  U 4  R1

Edge Resistance Plots U4

U1

30 kΩ

I

Edge Resistance Plots U4

30 kΩ U1

30 kΩ

I

Edge Resistance Plots U4

39 kΩ 30 kΩ U1

30 kΩ

I

Edge Resistance Plots U4

39 kΩ 30 kΩ 29 kΩ U1

30 kΩ

I

Edge Resistance Plots U4

39 kΩ 30 kΩ 29 kΩ U1

30 kΩ

58 kΩ

I

Edge Resistance Plots U4

39 kΩ 30 kΩ 29 kΩ U1

30 kΩ

58 kΩ 31 kΩ

I

Edge Resistance Plots U4

39 kΩ 30 kΩ 29 kΩ U1

30 kΩ

58 kΩ 31 kΩ

108 kΩ I

Edge Resistance Plots U4

39 kΩ 30 kΩ 29 kΩ U1

30 kΩ

58 kΩ

57 kΩ

31 kΩ

108 kΩ I

Experimental Evidence of Edge Modes: Imaging

Novac et al, ‘12

Experimental Evidence of Edge Modes: Imaging

Ma et al, ‘12

Fraunhofer Patterns and Current Distribution Impose I

Current phase relation of a single junction 𝐼𝐼𝐶𝐶 = 𝐽𝐽0 sin 𝜑𝜑

Current phase relation of the entire junction 𝑤𝑤/2 𝑤𝑤/2 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 Measure V 𝐼𝐼𝐼𝐼 = � 𝑗𝑗 𝑥𝑥 sin − 𝜑𝜑0 𝑑𝑑𝑑𝑑 = � 𝑗𝑗 𝑥𝑥 sin 𝛽𝛽𝑥𝑥 − 𝜑𝜑0 𝑑𝑑𝑑𝑑 𝜙𝜙0 −𝑤𝑤/2 −𝑤𝑤/2

𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼 𝑒𝑒 −𝜑𝜑0 𝑔𝑔 𝛽𝛽

𝑔𝑔 𝛽𝛽 Fourier Transform of j(x) 𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼 𝑒𝑒 −𝜑𝜑0 𝑔𝑔 𝛽𝛽

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = max 𝐼𝐼𝐼𝐼 𝑒𝑒 −𝜑𝜑0 𝑔𝑔 𝛽𝛽 𝜑𝜑0

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑔𝑔 𝛽𝛽

Fraunhofer Patterns and Current Distribution Icmax

B Icmax

B J(x)

Icmax

x

B

Dynes and Fulton ‘71

Measured Icmax

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑔𝑔 𝛽𝛽



𝑔𝑔 𝛽𝛽 = � 𝑒𝑒 𝑖𝑖𝛽𝛽𝑥𝑥 𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑒𝑒 𝑖𝑖𝜃𝜃 −∞

B

𝛽𝛽

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

Hilbert Transform

𝛽𝛽 ∞ 𝑙𝑙𝑙𝑙 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏 − 𝑙𝑙𝑙𝑙 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 𝛽𝛽 𝜃𝜃 𝛽𝛽 = � 𝛽𝛽 2 − 𝑏𝑏2 2𝜋𝜋 −∞

𝑑𝑑𝑑𝑑

Dynes and Fulton ‘71 Measured Icmax

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑔𝑔 𝛽𝛽 ∞

𝑔𝑔 𝛽𝛽 = � 𝑒𝑒 𝑖𝑖𝛽𝛽𝑥𝑥 𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑆𝑆 𝛽𝛽 + 𝑖𝑖𝑖𝑖 𝛽𝛽 −∞

B ∞

𝑆𝑆 𝛽𝛽 = � 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽𝛽𝛽 𝑗𝑗𝑒𝑒 𝑥𝑥 𝑑𝑑𝑑𝑑 −∞



𝐴𝐴 𝛽𝛽 = � 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑗𝑗𝑜𝑜 𝑥𝑥 𝑑𝑑𝑑𝑑 −∞

𝑗𝑗 𝑥𝑥 = 𝑗𝑗𝑒𝑒 𝑥𝑥 + 𝑗𝑗𝑜𝑜 𝑥𝑥

Dynes and Fulton ‘71 Measured Icmax ∞

𝑗𝑗 𝑥𝑥 = 𝑗𝑗𝑒𝑒 𝑥𝑥

𝑔𝑔 𝛽𝛽 = � 𝑒𝑒 𝑖𝑖𝛽𝛽𝑥𝑥 𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑆𝑆 𝛽𝛽 −∞

B ∞

𝑆𝑆 𝛽𝛽 = � 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽𝛽𝛽 𝑗𝑗𝑒𝑒 𝑥𝑥 𝑑𝑑𝑑𝑑 −∞

B

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑔𝑔 𝛽𝛽

Real

Dynes and Fulton ‘71 Measured Icmax

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑔𝑔 𝛽𝛽 ∞

𝑔𝑔 𝛽𝛽 = � 𝑒𝑒 𝑖𝑖𝛽𝛽𝑥𝑥 𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑆𝑆 𝛽𝛽 + 𝑖𝑖𝑖𝑖 𝛽𝛽 −∞

B

𝑗𝑗 𝑥𝑥 = 𝑗𝑗𝑒𝑒 𝑥𝑥 + 𝑗𝑗𝑜𝑜 𝑥𝑥 ∞

Only A contributes

𝑆𝑆 𝛽𝛽 = � 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽𝛽𝛽 𝑗𝑗𝑒𝑒 𝑥𝑥 𝑑𝑑𝑑𝑑 −∞ ∞

B

𝐴𝐴 𝛽𝛽 = � 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽𝛽𝛽 𝑗𝑗𝑜𝑜 𝑥𝑥 𝑑𝑑𝑑𝑑 −∞

Sample structure Contact bulk and edge directly X is Cadmium 92 nm

Material Properties • Device

Ti/Au Top gate with Al2O3 dielectric Ti/Au contacts

Ion mill defined mesa of HgTe 2DEG

18um

Bulk Properties

Bulk Density

400nm Junction Ungated 400 nm between SC contacts

Ti/Al SC contacts with etching close to the 2DEG

Ion mill defined mesa of HgTe 2DEG 4um wide

400nm Junction Ungated

400nm Junction Ungated

400nm Junction Ungated 400 nm Junction 200 700 180

600

160

140 500

I (nA)

120 400 100

300

80

60 200 40 100 20

0

-5

-4

-3

-2

-1

0 B (mT)

1

2

3

4

5

0

Effective area

Period corresponds to junction area + expelled flux

800nm Junction 800 nm between SC contacts Ti/Al SC contacts with etching close to the 2DEG

Ti/Au Top gate with Al2O3 dielectric Ion mill defined mesa of HgTe 2DEG 4um wide

800nm Junction Gate

QSHE

Vg [V]

Gating of Critical Current vs. B - 800nm Junction

Gating of Critical Current vs. B - 800nm Junction

Raw data

Gating of Critical Current vs. B - 800nm Junction

Raw data

Normalized data

Gating of Critical Current vs. B - 800nm Junction

Raw data

Normalized data

Gating of Critical Current vs. B - 800nm Junction

Raw data

Normalized data

Another device - 800nm Junction

Another device - 800nm Junction

Narrower Mesa – 2um

Deeper into the Insulating Regime

Absence of critical current Periodic oscillations with period h/2e

Non Topological Well – 4.5nm

Additional Considerations Fix I and measure V Edge mode quantized

What is J(x)? 𝑤𝑤/2

𝑤𝑤/2 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 𝐼𝐼𝐼𝐼 = � 𝑗𝑗 𝑥𝑥 sin − 𝜑𝜑0 𝑑𝑑𝑑𝑑 = � 𝑗𝑗 𝑥𝑥 sin 𝛽𝛽 − 𝜑𝜑0 𝑑𝑑𝑑𝑑 𝜙𝜙 0 −𝑤𝑤/2 −𝑤𝑤/2

Are we measuring Ψ 𝑥𝑥

2

Can this explain the measured widths