Interfacing single photons and condensed-matter systems

Report 6 Downloads 115 Views
Interfacing single photons and condensed-matter systems A. Imamoglu Quantum Photonics Group, Department of Physics ETH‐Zürich

Outline • A two dimensional electron gas embedded in a microcavity at B=0: Fermi-edge polaritons? • Strong coupling of optical excitations out of quantum Hall ground states to a microcavity.

Outline • A two dimensional electron gas embedded in a microcavity at B=0: Fermi-edge polaritons? • Strong coupling of optical excitations out of quantum Hall ground states to a microcavity.

Motivation

• A new spectroscopic tool for studying condensed-matter; bulk properties, quantum quenches, etc. • A new paradigm for quantum optics with nonlinearities arising from correlations.

Coupling optical excitations of 2D semiconductors to cavities Undoped QW

Exciton resonance

A bound electron‐hole  pair free to move in 2D

Coupling optical excitations of 2D semiconductors to cavities Undoped QW

Exciton resonance

A bound electron‐hole  pair free to move in 2D

Undoped QW in a  cavity: polaritons Strong‐coupling regime:  two split harmonic  oscillator modes for each  in‐plane k (Bloch)

Coupling optical excitations of 2D semiconductors to cavities Undoped QW

Exciton resonance

Undoped QW in a  cavity: polaritons

2D electron gas

Fermi edge  Singularity (FES)

Electrons at the Fermi‐ surface of the 2DEG  screen out the (heavy)  hole/impurity potential  and in the process render  the final state Fermi sea  wave‐funtion orthogonal  to the initial one: Power‐law tails

Coupling optical excitations of 2D semiconductors to cavities Undoped QW

Exciton resonance

Undoped QW in a  cavity: polaritons

2DEG

Fermi edge  Singularity (FES)

Electrons at the Fermi‐ surface of the 2DEG  screen out the (heavy)  hole/impurity potential  and in the process render  the final state Fermi sea  wave‐funtion orthogonal  to the initial one: Power‐law tails

2DEG in a cavity:   Fermi‐edge polaritons Theoretical prediction by  Averkiev & Glazov (2007):  ignores finite hole mass  and assumes power law is  not altered by the strong  cavity coupling

Experiment: a gate-tunable 2DEG embedded in a DBR microcavity • The experiments are carried out in a fiber-coupled dil fridge at an electron temperature of T~200 mK Electron density is varied from 3x1010 to about 3x1011 covering the ranges kFaB < 1 & kFaB > 1

Density dependent optical spectrum • Low electron density: trions and excitons are simultaneously visible; PL from trion – the lowest energy excitation • Medium density: exciton disappeares. Trion aquires an asymmetric lineshape (FES). • High density; PL from the whole Fermi sea is visible. Asymmetric reflection/ absorption at the Fermi level

Low density limit: tuning the cavity through the QW resonances

High density limit: tuning the cavity through the Fermi edge The excess  broadening of the  cavity‐mode for Ecav > EF is consistent  with per pass  absorption of %

High electron density regime: cavity on resonance with the Fermi edge • As the temperature is lowered below 4K, a split resonance with large asymmetry and a sharp lower peak appears • The lower energy peak is ~lorentzian and is narrower than the cavity-mode. T = 4K

T = 0.2K

High electron density regime: cavity on resonance with the Fermi edge • As the temperature is lowered below 4K, a split resonance with large asymmetry and a sharp lower peak appears • The lower energy peak is ~lorentzian and is narrower than the cavity-mode. • «Best fit» with Glazov model yields an exponent of -0.7!

T = 0.2K

Fermi-edge polaritons • Dispersion relation could be measured using white-light reflection at a finite angle • The splitting g > κcav/2 – strong coupling!

Fermi‐edge polaritons as the denisty is  increased above kFaB > 1

ne increased from 1x1011 (black) to 3x1011 (red)

Features and open questions • The role of hole-recoil: the disappearance of normal mode splitting with increasing electron density (kF)? • We expect recoil to change the low energy physics and to remove the enhancement of the optical coupling at the Fermi edge – why does the narrow lower-polariton peak survive? • Note: interesting physics takes place in the final state of the optical transition

Two-dimensional electron-gas (2DEG) in a perpendicular magnetic field • A Hall bar of size 1 mm and an optical excitation spot of 2 μm diameter, probing the bulk locally. Transport measurements

Landau levels in off‐resonant cavity  reflection ν1 ν=1

Cavity

• Landau fan of singlet trion lines • Spin polarization at n=1 is visible • For B > 4 T, exciton line also appears

ν=1

Polariton modes for 2 > ν > 1 at B= 3T ν = 1

ν = 2

ν = 2

• • •

For ν > 2, we observe the uncoupled cavity reflection since all electronic  transitions are Pauli‐blocked At ν = 2, a normal mode splitting appears At ν = 1, ‐ splitting is minimal whereas + splitting is maximal.

Polariton modes at ν = 1 (B=3T)

Spin polarization at ν=1 is not perfect: high temperature or heavy‐ light‐hole mixing?

Polariton modes at B=6T • ν = 1 spin polarization  occurs over a very narrow  gate voltage range • No feature at ν = 2/3  (spin polarization or  depolarization) • A small feature at ν = ½ • The cavity is red‐detuned  – hence the asymmetry  of the polariton peak  strengths.

Few-photon dependent reversible polariton splitting

Line cut at 4T without (red) and  with (blue) a resonant laser.

Time‐resolved measurents: laser power on sample 60pW

• Controlling polariton splitting with single photons:  strong photon‐photon interactions?

Features and open questions • Cavity-QED is a powerful spectroscopic tool for studying the bulk properties of both IQHE and FQHE states: -

-

The optically generated hole is delocalized over the entire excitation region. Spectroscopy using one photon at a time – photon absorption induced local heating can be minimized (signal = transmission/reflection of incident photons). Sensitivity of the polariton splitting to incompressibility of the ground-state?

• Novel platform for photon-photon interactions • Photon absorption induced quantum quench into or out of a state with topological order?

Versatile structure for cavity-QED (Reichel)

• Allows for coupling a wide range of emitters to a cavity with m size beam radius: - 2DEG, Graphene-like WSe2 (Kis group) • Tunable vacuum field strength and cavity lifetime

Transition metal dichalcogenides (TMDC) WSe2

m=+3/2 m=+1/2

m=‐3/2 m=‐1/2

m=+1/2 m=‐1/2

m=‐1/2 m=+1/2

Photoluminescence from a monolayer of WSe2 Degree of circular dichroism:  ~ 50 – 60 %

quantum dot?

Measurement of the exciton magnetic  moment: Faraday geometry ~ 2.5meV@ 8T g‐factor ~5 ‐linearly polarized excitation ‐detection in circular basis 

Measurement of the exciton magnetic  moment: Faraday geometry ~ 2.5meV@ 8T g‐factor ~5 ‐linearly polarized excitation ‐detection in circular basis 

Voigt geometry Strongly anisotropic  magnetic field response  – consistent with the  orbital contribution.

Thanks to • Stephan Smolka, Wolf Wuester, Werner Wegscheider • Ajit Srivastava, Meinrad Sidler, Andras Kis