INTRODUCTION METHODS RESULTS RESULTS CONCLUSIONS

Report 3 Downloads 137 Views
DESIGN  OF  AN  IN  VITRO  PLATFORM  TO  STUDY  LDL  RETENTION  BY  GLYCOSAMINOGLYCANS   Ana  M.  Porras,  Taylor  Weis  &  Kristyn  Masters  

Department  of  Biomedical  Engineering,  University  of  Wisconsin  -­‐  Madison   INTRODUCTION  

METHODS  

RESULTS  

Glycosaminoglycans  in  Healthy  AorCc  Valves   Glycosaminoglycans  (GAGs)  are  long  polysaccharide  chains  usually  found   in   the   spongiosa   layer   of   the   aorFc   valve,   where   they   serve   as   lubricants1.   The  most  abundant  GAGs  in  aorFc  valves  are  chondroiFn  sulfate  (CS)  and   hyaluronic   acid   (HA).   While   HA   is   not   associated   with   a   core   protein,   CS   is   found   within   the   three   most   abundant   valve   proteoglycans:   decorin,   biglycan,  and  versican2.  

Juvenile  

1yo  Adult   2yo  Adult  

LDL/oxLDL  (100ug/ml)  mixed   prior  to  UV  exposure.   Amount  of  parFcles  diffused   out  measured  every  24  hrs.    

Methacrylic   Anhydride  

LDL  OxidaCon   5  nm  CuSO4     37C,  24  hrs    

Methacrylated   GelaFn  

GelaFn  

I-­‐2959   UV  light  

oxLDL  

LDL  

OR   HA   CS   1x  =  1.6  mg/ml     1x  =  8  mg/ml   1x  is  equivalent  to  physiologic  concentraFons  

GAGs  and  Calcific  AorCc  Valve  Disease  (CAVD)   One   of   the   earliest   events   in   the   development   of   CAVD   is   leaflet   thickening   due   to   proteoglycan   (PG)   enrichment   of   the   spongiosa   (Figure   1).   AddiFonally,  an  accumulaFon  of  GAGs  is   evident   in   calcified   aorFc   valves,   where   they   localize   around   areas   of   nodule   formaFon3.  These  findings  suggest  GAGs   may   play   a   crucial   role   in   the   iniFaFon   and  progression  of  CAVD.    

RetenCon  Studies  

Hydrogel  Synthesis  

Entrapment  Studies  

5%  w/v     gelaFn  

Once  synthesized,  gels  were   incubated  in  100  ug/ml  LDL   or  oxLDL.  Amount  of   parFcles  diffused  in   measured  every  24  hrs.    

HA  Contributes  to  LDL  and  oxLDL  RetenCon   13   11   9   7   5   3   1   -­‐1  

Figure   1.   AorFc   valves   from   adult   h y p e r c h o l e s t e r o l e m i c   s w i n e   exhibiFng   hallmarks   of   early   valve   disease  are  enriched  in  GAGs3.          

Low-­‐Density  Lipoprotein  RetenCon  by  GAGs   During   atherosclerosis,   GAGs   in   the   vasculature   are   known   to   “trap”   lipoproteins   and   increase   their   sensiFvity   to   oxidaFve   modificaFon4.   We   have   also   observed   an   increase   in   LDL   oxidaFon   accompanying   GAG   enrichment  in  the  aforemenFoned  hypercholesterolemic  swine  model3.       LDL   retenFon   by   PGs   is   hypothesized   to   play   an   important   role   in   the   iniFaFon  of  aorFc  valve  disease5,6.   However,  this  process  remains  largely   uncharacterized   and   the   roles   of   GAG   enrichment   and   changes   in   GAG   composiFon  in  facilitaFng  the  deposiFon  of  LDL  and  oxidized  LDL  (oxLDL)   in  the  context  of  the  aorFc  valve  have  not  previously  been  examined.    

The  aim  of  this  study  was  to  create  an  in  vitro  model  to  characterize   how  LDL  and  oxLDL  deposiCon  is  impacted  by  changes  in  extracellular   matrix  composiCon  that  mimic  early  events  in  CAVD.  

B)  

oxLDL  Retained  (μg)   Control   GelaFn   1x  HHA  A   1x   2x  HHA   A   2x   4x  HHA   A   4x  

0  

24  

*   *  

*   *   *   48  

72  

96  

LDL  Retained  (μg)   13   11   9   7   5   3   1   -­‐1  

*   *  

120  

*  

*  

*  

0  

24  

Time  (hours)  

48  

72  

96  

120  

Time  (hours)  

Figure   2.   QuanFficaFon   of   (A)   oxLDL   and   (B)   LDL   retenFon   in   gelaFn-­‐HA   hydrogels   over   6   days.   Samples   were   normalized   to   a   control   containing   nanoparFcles   of   the   same   diameter   as   LDL.   *P