Introduction to Sine and Cosine Functions AWS

Report 6 Downloads 149 Views
Unit 2 - (3) Intro Sine & Cosine

September 13, 2016

Graphic Sinusoid

the graph of any trigonometric function.

Introduction to Sine and Cosine Functions 9/13/16

Verbal: Related Vocabulary Periodic function is a function whose values repeat at regular intervals.

Cycle the part of the graph from any one point to the point where the graph starts to repeat.

Unit 2 - (3) Intro Sine & Cosine

Period is the difference between the horizontal coordinates corresponding to one cycle. (How long does it take the function to start repeating.)

The parent function, the function without any transformations, of sine and cosine has a period of 360 degrees.

Numeric Do not copy. Follow the directions to create a drawing. 1. Draw a first quadrant angle in standard position. Label the terminal side r. 2. Label the initial side x. 3. Draw a line from the terminal side to the horizontal axis. Label that line y. That is called a reference triangle.

September 13, 2016

Algebraic The function f is a periodic function if and only if there is a number p for which f(x-p)=f(p)

Using that triangle write the value of

and

Unit 2 - (3) Intro Sine & Cosine

September 13, 2016

How do they relate to what you already know about those function? Now let's take a look at the drawing and discuss what is happening to the graph and how it relates to the coordinate plane.

Definitions

SOH-CAH-TOA

QUADRANT II

SINE

TANGENT QUADRANT III

QUADRANT I

Problems The terminal side of an angle in standard position contains the point (-3,4). Sketch the angle in standard position and find the sine, cosine and tangent of the angle.

ALL

COSINE QUADRANT IV

ALL STUDENTS TAKE CHEMISTRY

Unit 2 - (3) Intro Sine & Cosine

September 13, 2016

The terminal side of an angle in standard position contains the point (8,-6). Sketch the angle in standard position and find the sine, cosine and tangent of the angle.

The terminal side of an angle in standard position contains the point (-3,-7). Sketch the angle in standard position and find the sine, cosine and tangent of the angle.

The terminal side of an angle in standard position contains the point (-1,-5). Sketch the angle in standard position and find the sine, cosine and tangent of the angle.

What is the sine of theta if theta equals 180 degrees? Prove it! The calculator told me is not proof!!!!