Tutorials and Reviews International Journal of Bifurcation and Chaos, Vol. 17, No. 9 (2007) 2839–3012 c World Scientific Publishing Company
A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM’S NEW KIND OF SCIENCE. PART VII: ISLES OF EDEN LEON O. CHUA, JUNBIAO GUAN∗ , VALERY I. SBITNEV and JINWOOK SHIN Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720, USA ∗ Department of Mathematics, Shanghai University, Shanghai 200436, P. R. China Received February 5, 2007; Revised June 12, 2007 This paper continues our quest to develop a rigorous analytical theory of 1-D cellular automata via a nonlinear dynamics perspective. The 18 yet uncharacterized local rules are henceforth partitioned into ten complex Bernoulli στ -shift rules and eight hyper Bernoulli στ -shift rules, the latter including such famous rules 30 and 110 . All exhibit a bizarre composite wave dynamics with arbitrarily large Bernoulli velocity σ and Bernoulli return time τ as the length L → ∞. Basin tree diagrams of all ten complex Bernoulli στ -shift rules are exhibited for lengths L = 3, 4, . . . , 8. Superficial as it may seem, these basin tree diagrams suggest general qualitative properties which have since been proved to be true in general. Two such properties form the main results of this paper; namely, • Rule 90 has no Isles of Eden. • Rules 105 and 150 are composed of nothing but Isles of Eden for all string lengths L not divisible by 3. Explicit global state transition formulas are given for local rules 90 , 105 and 150 . Such formulas led to the rigorous proof of several surprising periodicity constraints for rule 90 , and to the discovery of a new global, quasi-equivalence class, defined via an alternating transformation. In particular, local rules 105 and 150 are globally quasi-equivalent where corresponding spacetime patterns can be derived from each other by simply complementing every other row. Another important result of this paper is the discovery of a scale-free phenomenon exhibited by the local rules 90 , 105 and 150 . In particular, the period “T ” of all attractors of rules 90 , 105 and 150 , as well as of all isles of Eden of rules 105 and 150 , increases linearly with unit slope, in logarithmic scale, with the length L. Keywords: Cellular automata; nonlinear dynamics; attractors; Isles of Eden; Bernoulli shift; shift maps; basin tree diagram; Bernoulli velocity; Bernoulli return time; complex Bernoulli shifts; hyper Bernoulli shifts; rule 90; rule 105; rule 150; binomial series; scale-free phenomena.
2839
2840
L. O. Chua et al.
1. Recap of Main Results from Parts I to VI A rigorous analytical theory of one-dimensional cel∆ lular automata composed of L = I + 1 identical cells, as shown in Fig. 1, has been studied in the following series of papers from a nonlinear dynamics perspective1 : Part I: Threshold of Complexity [Chua et al., 2002] Part II: Universal Neuron [Chua et al., 2003] Part III: Predicting the Unpredictable [Chua et al., 2004] Part IV: From Bernoulli shift to 1/f spectrum [Chua et al., 2005a] Part V: Fractals everywhere [Chua et al., 2005b] Part VI: From Time-reversible attractors to the arrow of time [Chua et al., 2006]
1.1. Local rules and Boolean cubes Observe that the “zeros” and “ones” in Wolfram’s truth tables [Wolfram, 2002] are symbolic variables denoting a logic “Yes” or “No” state, or a “high” or “low” state in digital electronic circuit implementations. In order to exploit powerful mathematical tools from nonlinear dynamics, it is necessary to work with real numbers. Consequently, in the papers cited above, the symbolic truth table shown in Fig. 1(c) is converted into the numeric truth table shown in Fig. 1(d). One could also redefine the “0” and “1” in the symbolic truth tables as real numbers, instead of changing “0” to “−1”. There are two reasons why we opted for the latter choice. First, each of the 256 local rules can be implemented on a cellular neural network (CNN) chip [Chua & Roska, 2002] with at least three orders of magnitude faster speed than computing on standard digital computers. Such CNN implementations require that the truth tables be formulated in terms of “1” and “−1” [Chang & Muthuswamy, 2007]. The second reason is that the numeric truth table shown in Fig. 1(d) can be conveniently represented by merely coloring the eight vertices of a “unit Boolean cube” whose center is
1
located at the origin of the (ui−1 , ui , ui+1 ) — input space, as shown in Fig. 1(e). Such a representation in turn leads to simple visualizations of many rotational symmetrical transformations [Chua et al., 2003]. Each of the 256 local rules corresponds to exactly one Boolean cube in Table 1 (extracted from [Chua et al., 2003]). Observe that the number N printed under each cube corresponds to the local rule number in [Wolfram, 2002]. This number is easily obtained by adding the “vertex weights” of all red vertices in the Boolean cube, where the vertex weight for vertex kmis equal to 2k , as specified in Fig. 1(e), as well as in the lower part of Table 1.
1.2. Threshold of complexity Observe also that the identification number N of each Boolean cube is colored in red, blue or green, depending on whether the red vertices can be segregated and separated from each other by κ = 1, 2, or 3 parallel planes, where κ is called the index of complexity of the local rule N [Chua et al., 2002]. Table 2 lists all 256 local rules along with their index of complexity. The index of complexity κ is not a definition of complexity. Rather it measures the relative number of electronic devices needed to implement each local rule. A κ = 1 local rule requires the smallest number of transistors. More transistors must be added to realize a κ = 2 local rule. Still more transistors are required to implement a κ = 3 local rule. In other words, the index of complexity κ measures the relative “cost” of hardware (Chip) implementations. While the asymptotic qualitative behaviors of all κ = 1 local rules, and all κ = 3 local rules, have been completely understood and characterized in [Chua et al., 2006], and in this paper (for Rules 105 , and 150 ), there are some κ = 2 local rules that have not yet been characterized, including rules 110 , 124 , 137 and 193 [Chua et al., 2004]. Since these four rules are universal Turing machines, they can never be completely characterized. In other words, it seems that κ = 2 can be considered as the threshold of complexity, in the sense articulated in [Wolfram, 2002].
These 6-part papers have been republished, with errors corrected, in two recent edited books [Chua, 2006] and [Chua, 2007].
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden
2841
Fig. 1. (a) A one-dimensional Cellular Automata (CA) made of L = I + 1 identical cells with a periodic boundary condition. Each cell “i” is coupled only to its left neighbor cell (i − 1) and right neighbor cell (i + 1). (b) Each cell “i” is described by a local rule N , where N is a decimal number specified by a binary string {β0 , β1 , . . . , β7 }, βi ∈ {0, 1}. (c) The symbolic truth table specifying each local rule N , N = 0, 1, 2, . . . , 255. (d) By recoding “0” to “−1”, each row of the symbolic truth table in (c) can be recast into a numeric truth table, where γk ∈ {−1, 1}. (e) Each row of the numeric truth table in (d) can be represented as a vertex of a Boolean Cube whose color is red if γk = 1, and blue if γk = −1.
2842
L. O. Chua et al. Table 1.
Encoding 256 local rules defining a binary 1D CA onto 256 corresponding “Boolean Cubes”.
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 1.
(Continued )
2843
2844
L. O. Chua et al. Table 1.
(Continued )
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 1.
(Continued )
2845
2846
L. O. Chua et al.
Table 2. List of 256 local rules with their complexity index coded in red (κ = 1), blue (κ = 2) and green (κ = 3), respectively.
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
κ = 1 (Red) 104 rules κ = 2 (Blue) 126 rules κ = 3 (Green) 26 rules 1.3. Only 88 local rules are independent Among the 256 local rules, only 88 are dynamically independent2 from each other in the sense that the dynamics and solutions (space-time diagrams) of any one of the remaining 168 local rules can be derived exactly from one of the 88 globally equivalent rules, listed in Table 3 [Chua et al., 2004], via one of the following three topological conjugacies: 3 Global Equivalence Transformations 2
1. left-right transformation T † 2. global complementation T 3. left-right complementation T ∗
For the reader’s convenience, each of the 256 local rules is listed in the left-most column in Table 4, along with its equivalent local rule with respect to each of the above three global equivalence transformations. Observe that due to symmetries possessed by certain rules, some rules have only two † distinct rules e.g. equivalent T ( 1 ) = 1 and ∗ † T 1 = T 1 = 127 ; T 29 = T 29 = 71 and T ∗ 29 = 29 ; T † 15 = T ∗ 15 = 85 and T 15 = 15 . Such rules are identical twins. There are altogether 72 identical twin local rules, as listed in Table 5. A few
We thank Andy Adamatzky [Adamatzky, 2007] for suggesting possible intersections of our work with [Wuensche & Lesser, 1992]. We thank Andy Wuensche for informing us that the concept of global equivalence classes was first mentioned in [Walker, 1971]. The 88 equivalence classes of local rules were listed in [Walker & Aadryan, 1971] and [Wuensche & Lesser, 1992], using differing numbering schemes. It is likely that other results published, or yet to be published, in our series of tutorial expositions on “Wolfram’s New Kind of Science” may also intersect, if not contained, in other works. We apologize to all such authors for not citing their publications, and we will appreciate their informing us of any such intersections so that future acknowledgments can be made. Being novice on the mature subject of cellular automata, the high probability of such inadvertent omissions is what prompted the authors to publish their papers as expositions for a nonspecialist audience, and not as original papers, in the Tutorial-Review section of this journal.
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 3. The first 88 globally-independent local rules among the 256 listed in Table 2.
88 Global Equivalence Classes 0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15
18 19 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 40 41 42 43 44 45 46 50 51 54 56 57 58 60 62 72 73 74 76 77 78 90 94 104 105 106 108 110 122 126 128 130 132 134 136 138 140 142 146 150 152 154 156 160 162 164 168 170 172 178 184 200 204 232
local rules areendowed with additional symmetries such that T † N = T N = T ∗ N = N . Such rules are identical quadruplets. There are only eight identical quadruplet rules, as listed in Table 6.
1.4. Robust characterization of 70 independent local rules By virtue of the three global equivalence transformations derived in [Chua et al., 2004] it suffices to conduct an in-depth analysis of only the 88 local rules listed in Table 3, out of 256, a saving of nearly 70% of otherwise wasted man hours! By using random bit strings (with at least L = 400 bits) as testing signals, we have found via extensive computer simulations, and supplemented by analytical studies [Chua et al., 2006], that the robust time asymptotic dynamics of 70, out of 88, local rules can be characterized by only one of four steady-state behaviors.
1.4.1. Steady-state behavior 1: Period-1 attractors or period-1 isles of Eden Table 7 lists 26 local rules from Table 3 which exhibit a robust period-1 steady-state behavior 3
2847
corresponding to fixed points of the time-1 characteristic function χ1N of local rule N [Chua et al., 2004]. Except for rule 204 where all orbits are period-1 isles of Eden, the generic steady-state behavior of the other 25 rules in Table 7 are all period-1 attractors. This asymptotic behavior holds for almost all initial random bit strings, and for ∆ arbitrary length L = I + 1.
1.4.2. Steady-state behavior 2: Period-2 attractors or period-2 isles of Eden Table 8 lists 13 local rules from Table 3 which exhibit a robust period-2 steady-state behavior corresponding to fixed points of the time-2 characteristic function χ2N of local rule N [Chua et al., 2006]. Except for rule 51 where all orbits are period-2 isles of Eden, the generic steady-state behavior of the other 12 rules in Table 8 are all period-2 attractors. This asymptotic behavior holds for almost all initial random bit strings, and for arbitrary L.
1.4.3. Steady-state behavior 3: Period-3 attractors There is only one rule from Table 3 which exhibits a robust period-3 attractor, namely, rule 62 . As demonstrated in, Figs. 5–14 of [Chua et al., 2006], almost all initial bit strings of 62 converge to a period-3 orbit corresponding to fixed points of the time-3 characteristic function χ362 of local rule 62 [Chua et al., 2006]. The other attractors of 62 have a relatively small basin of attraction. The period-3 isles of Eden of 62 have no basins of attraction and therefore require an initial bit string falling exactly on one of the three bit strings forming an isle of Eden.
1.4.4. Steady-state behavior 4: Bernoulli στ -shift attractors or isles of Eden Table 9 lists 30 local rules from Table 3 which exhibit a robust Bernoulli στ -shift steady-state behavior corresponding to a period-T attractor or a period-T isle of Eden, where T ≤ τ L. The three parameters (σ, τ , β) characterizing each Bernoulli rules are listed in Table 10 for each of the 30 robust Bernoulli rules listed in Table 9.3 We will henceforth call “σ” the Bernoulli Shift Velocity, “τ ” the Bernoulli Return Time and “β” the Bernoulli Complementation sign, or simply Bernoulli
Table 10 is constructed from Table 16 of [Chua et al., 2005, pp. 1159–1162].
2848
L. O. Chua et al.
Table 4. Table of globally equivalent local rules. All local rules in each row are globally equivalent to each other. Rows with red, blue, or green background colors denote local rules with a complexity index κ = 1, 2, or 3, respectively.
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 4.
(Continued )
2849
2850
L. O. Chua et al. Table 4.
(Continued )
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 4.
(Continued )
2851
L. O. Chua et al.
2852
Table 5.
0
1
4
5
250
251
254
255
15
18
19
22
233
236
237
240
29
32
33
36
219
222
223
226
37
43
50
54
201
205
212
218
55
57
71
72
183
184
198
200
73
76
85
90
165
170
179
182
91
94
95
99
156
160
161
164
104
108
109
113
142
146
147
151
122
123
126
127
128
129
132
133
Table 6.
23
51
in Table 29A of [Chua et al., 2006, pp. 1293– 1297] for rules 74 , 88 , 173 and 229 . Each of these attractors has a large enough basin of attraction that different random initial bit strings could converge to one of these robust Bernoulli στ shift attractors. This steady-state behavior does not ∆ depend on the length L = I + 1 of the bit string. Except for local rule 15 and 170 , whose orbits are all isles of Eden, all other generic steady states converge to a Bernoulli στ -shift attractor.
List of 72 identical twin rules.
1.4.5. There are ten complex Bernoulli and eight hyper Bernoulli shift rules
List of eight identical quadruplet rules.
77
105
150
178
204
232
velocity, time, and sign, respectively. Observe that local rules 6 , 9 , 11 , 14 , 27 , 35 , 38 , 43 , 56 , 57 , 58 , 134 , 142 , and 184 have two robust Bernoulli attractors, whereas local rules 25 and 74 have three robust Bernoulli attractors. Observe from Table 10 that only five rules listed in Table 10 11 , 14 , 15 , 43 and 142 have a negative sign for β. The space-time evolution patterns of these five rules are generated by following the same procedures as the other rules (shift left by σ bits if σ > 0, or shift right by |σ| bits if σ < 0, every τ iterations), and then complementing (change color of all bits) the resulting bit string. In fact, except for rule 15 , only one of two Bernoulli attractors from the other four rules have a negative sign for β. Observe that any Bernoulli (σ, τ , β) rule with β < 0 is equivalent to iterating the rule with twice the velocity and return time without complementation, i.e. (σ, τ, β) = (2σ, 2τ, |β|),
if β < 0
(1)
For examples illustrating this equivalence, see Table 5 (pp. 2393) for 15 in [Chua et al., 2003], Fig. 29(a2 ) for 11 , Fig. 29(b2 ) for 14 , Fig. 29(d2 ) for 43 , and Fig. 29(i2 ) for 142 in [Chua et al., 2006]. ∆
In general, T = τ L if T0 = τ L/|σ| is not an integer. If T0 is an integer, then T = τ L/|σ| for |σ| ≥ 2. If each bit string in the period-T orbit consists of a concatenation of m identical substrings, then the period T is reduced further to T /m. Each Bernoulli rule listed in Table 9 can possess up to three robust Bernoulli attractors, as depicted
Together, Tables 7–9, plus the period-3 rule 62 , made up 70, out of the 88, local rules from Table 3. The robust steady-state behaviors of these 70 local rules have been completely characterized in [Chua et al., 2006]. The remaining 18 rules listed in Table 3 that have not yet been characterized are listed in Table 11, dubbed complex Bernoulli-shift rules, and Table 12, dubbed hyper Bernoulli-shift rules. It will be clear from the sequel that all of these 18 yet uncharacterized rules are also identified with Bernoulli shifts because they behave like Bernoulli στ -shifts from Table 9 except that the number of attractors is no longer bounded by 3, but increases Table 7.
List of 26 robust Period-1 local rules.
26 Topologically-Distinct Period-1 Rules
0
4
8
12 13
32 36 40 44 72 76 77 78 94 104 128 132 136 140 160 164 168 172 200 204 232
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 8.
List of 13 robust Period-2 local rules.
13 Topologically-Distinct Period-2 Rules
1 5 19 23 28 29 33 37 50 51 108 156 178
eight hyper Bernoulli-shift rules in Table 12 are nonbilateral, and correspond to those listed in column 1 of Table 18 of [Chua et al., 2006]. Table 13 gives a composition of the asymptotic behaviors of all 88 dynamically-independent local rules listed in Table 3. In this paper (Part VII) only the ten complex Bernoulli-shift rules from Table 11 will be studied. The remaining eight Hyper Bernoulli-shift rules from Table 12 will be studied in Part VIII.
2. Basin Tree Diagrams of Ten Complex Bernoulli Shift Rules For binary bit strings xn = (xn0
xn1
xn2
···
xnL−1 )
List of 30 robust Bernoulli στ -shift local rules.
30 Topologically-Distinct Bernoulli στ -shift Rules
2
3
6
7
9
10 11 14 15 24
xn → χ1N (xn ) = xn+1
(3)
under local rule N must converge to either a fixed point x∗ = (xn0
∗
xn1
∗
∗
∗
xn2 · · · xnL−1 ) (4) or to a periodic orbit ΓT N of period T ≤ Tmax , at some finite time n∗ = Ttransient + T , where → (5) χ1N : is the time-1 characteristic function defined in [Chua et al., 2005a], and Tmax = 2L ∆
25 27 34 35 38 42 43 46 56 57 58 74 130 134 138 142 152 162 170 184 ∆
with the length L = I + 1 of the bit strings. The ten complex Bernoulli shift rules in Table 11 are bilateral, and correspond to those listed in column 1 of Table 17 of [Chua et al., 2006, pp. 1176]. The
(2)
at time n with finite L and periodic (or fixed) boundary conditions, the evolution ∆
Table 9.
2853
(6)
is the number of distinct binary bit strings of length L.
2.1. Basin of attraction and basin trees In general, many initial bit strings can converge to one of several period-T orbits, including period-1 orbits (i.e. fixed points of χ1N ). Definition 1. Basin of attraction B ΓT N of ΓT N . The union of all bit strings which converge to a period-T orbit ΓT N of local rule N , including all bit strings belonging to ΓT N , is called the of ΓT N . basin of attraction B ΓT N
2854
L. O. Chua et al. Table 10. Bernoulli Parameters σ (Bernoulli shift velocity), τ (Bernoulli return time), and β (Bernoulli complementation sign) associated with the 30 Robust Bernoulli Rules from Table 9.
N
2 3 6 7 9 10 11 14 15 24 25
27 34 35 38
σ
τ
β
N
1 -1 2 -2 -1 -2 2 1 1 -1 1 -1 -1 -1 -1 3 2 -1 2 1 -1 1 2 2
1 2 2 2 2 2 3 1 1 1 1 1 1 1 2 3 5 2 2 1 2 1 2 2
+ + + + + + + + +
42
Table 11.
43 46 56 57 58
+ 74
+ + + + + + + + + + +
130 134 138 142 152 162 170 184
σ
τ
β
1 1 -1 1 1 -1 1 -1 1 -1 1 2 -3 1 2 -2 1 1 -1 -1 1 1 1 -1
1 1 1 1 1 1 1 1 1 2 1 2 3 1 2 2 1 1 1 1 1 1 1 1
+ +
List of ten complex Bernoulli-shift rules.
18 22 54 73 90 105 122 126 146 150
+ + + + + + + + + + + + + + + + + + + +
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 12. rules.
ΓT N , excluding ΓT N , is called the basin trees of ΓT N .
List of eight Hyper Bernoulli-shift
26 30 41 45
More precisely,
60 106 110 154
An example of a basin tree is shown in Fig. 3(g) of [Chua et al., 2006] for rule 62 with L = 9. In this case, ΓT = Γ1 62 = 0m , and (ΓT ) = Γ1 62 m m = 73 , 85 , 146 , 149 , 165 , 169 , 170 , 292 , 298 , 330 , 338 , 340 , 511 ∆ (9) B ΓT 62 = (Γ1 ) ∪ 0m
∆ (ΓT ) = B ΓT N \ΓT N
Table 13. Steady-state characterization of 88 dynamicallyindependent local rules.
Topological Classifications of 88 Equivalence Classes Topologicallydistinct Rules
Number
Period-1 Rules
26 13 1 30
Period-2 Rules Period-3 Rules Bernoulli στ -Shift Rules ComplexBernoulli-Shift Rules Hyper Bernoulli-Shift Rules
In this case, one can associate the basin tree (Γ3 ) m m m , 60m as two subtrees 40m and {23m , 1 , 35 , 22 } emerging from the period-3 orbit Γ3 62 , which is analogous to a cluster of roots. For large L, a basin tree in general is made of many topologically similar subtrees, such as Fig. 11 of [Chua et al., 2006]. In this case, we have a period-14 orbit m , 102 , 93m , 51m , 110 , 89m , 55 , Γ( 62 ) = 59m m 108 , 91m , 54 , 109 , 27m , 118 , 77m (12) and the basin tree Γ14 62 of Γ14 62 is made of seven subtrees having identical topologies.
8 88
More precisely, ∆ =∪ x∈ : ρnN (x) ∈ ΓT B ΓT N
(7)
∆
ρnN (x) = ρ1N ◦ ρ1N ◦ · · · ◦ ρ1N (x) n times
is the time-n map of N [Chua et al., 2005a] ρnN : x0 → xn , where n depends in general on x. Definition 2. Basin Trees (ΓT ). The set of all bit strings which converges to a period-T orbit 4
(8)
Observe from Fig. 3(g) that the digraph of is a directed tree from graph theory. Γ1 62 Another example of a basin tree is shown in Fig. 6 of [Chua et al., 2006]. Consider the period-3 orbit ∆
m , 38m , 61 (10) Γ3 62 = 3m in Fig. 6(a)-i. The basin tree of Γ3 62 is the set of bit strings ∆
m , 23 , 60m , 1m , 35m , 22m (11) (Γ3 ) = 40m
10
Total
where
2855
2.2. Garden of Eden Definition 3. Garden of Eden. A bit string
x = (x0
x1
x2
...
xL−1 )
is said to be a garden of Eden of a local rule N iff its preimage is an empty set. More precisely,4 a bit string x is a garden of Eden of N iff it has no predecessors in the sense
Under Definition 3, a fixed point x∗ of χ1N , i.e. a period-1 orbit, is not a garden of Eden of N because χ−1 (x∗ ) = x∗ .
2856
L. O. Chua et al.
that there does not exist a bit string y such that x = χ1N (y).
Proof.
Follows directly from Definitions 2 and 4.
Many examples of gardens of Eden can be found in [Chua et al., 2006]. In particular, all gardens of Eden of 62 are identified by a pink color in Figs. 3, 6, 8, 9, 11–14, in [Chua et al., 2006]. Observe that they are just the terminus of subtrees.
A bit string x is a period-n isle of Eden of N ⇔ the orbit through x is a period-n orbit Γn N where each bit string x, n−1 1 2 χ N (x), χ N (x), . . . , χ N (x) has a unique preimage.
Corollary 1.
Proof.
Follows from Eq. (14) and Proposition 1.
2.3. Isle of Eden A cursory inspection of the basin of attractions of the period-3 orbits Γ3 62 of rule 62 in Figs. 5(a)– 5(f) in [Chua et al., 2006] reveals that there are no basin trees converging to any node (i.e. bit string) belonging to these period-3 orbits! Such orbits are indeed special, and except for rules 15 , 85 , 45 , 105 , 150 , 154 , 170 , and 240 , they are isolated period-T orbits which are buried amidst neighboring bit strings belonging to basin trees of other periodic orbits. We will see in Part VIII that for large L, these isolated period-T orbits could have extremely long periods and hence are very, very hard to find,5 like well-hidden Easter eggs! Moreover, such rare objects cannot exist in Rn in view of the Zubov– Ura–Kimura Theorem [Garay & Hofbauer, 2003], which implies that “no compact isolated invariant sets in Rn can be an isle of Eden”. These objects can be either isolated or dense, and are called Isles of Eden in [Chua et al., 2005b] and [Chua et al., 2006]. It’s time to give a formal definition. Definition 4. Isle of Eden.
A bit string x = (x0
x1
x2
···
xL−1 )
is said to be a period-n isle of Eden of a local rule N iff its preimage under χnN is itself, where χnN is the time-n characteristic function of N . More precisely, x is a period-n isle of Eden of a local rule N iff (x) = x χ−n N
(13)
Proposition 1. A bit string x is a period-n isle of
Eden of N ⇔ x belongs to a period-n orbit Γn N with an empty basin tree; i.e. =Ø (14) Γn N when Ø denotes the empty set.
Remarks 1. To avoid clutter, we will usually refer to all bit strings belonging to the orbit of a period-n isle of Eden also as an isle of Eden. 2. Every bit string belonging to a period-n isle of Eden has exactly one incoming and one outgoing bit string, for all n ≥ 2.
2.4. Gallery of basin tree diagrams
The collection of all period-n orbits Γn N of all possible periods n = 1, 2, . . . and their assoof an L-bit celluciated basin trees Γn N lar automata under local rule N is called a basin tree diagram of local rule N . An examination of such diagrams, even for a relatively small L, can reveal certain characteristic qualitative behaviors of the space-time patterns of many local rules. These empirical characteristics can sometimes be proved to be true in general, as will be illustrated for the complex Bernoulli shift rules 105 and 150 in this paper, and for the hyper Bernoulli shift rules 45 and 154 in Part VIII. A gallery of such basin tree diagrams for the ten complex Bernoulli shift rules listed in Table 11 is exhibited in Tables 14–23 for L = 3, 4, 5, 6, 7 and 8, respectively. Each table displays the periodic orbits and their basin trees, where each bit string is displayed in color along with its decimal identification number, calculated from the decimal equivalent of the binary bit string as in Fig. 6 of [Chua et al., 2006]. For example, for L = 3, the two and in Gallery binary bit strings 18-1 from Table 14 would be identified by the decimal numbers6 1 • 22 + 0 • 21 + 0 • 20 = 4
5 Every isolated long-period isle of Eden is a gem worth digging for. They would provide ideal havens for cryptographic systems. Any one who discovers a long-period isle of Edens earns the right of naming it after himself for posterity reasons! 6 Each page of the basin tree diagrams listed under Tables 14–23 will be called a gallery, and identified by a Gallery number N − k, k = 1, 2, . . . , where N is the local rule number.
2857
Basin tree diagrams for rule 18 .
7 0
3
1
4 Transient phase
Gallery 18 -1
6
5
2
Transient phase
0 1 2 3 4 5
0 1 2 3 4 5
Basin tree diagrams for Rule 18 8 =1 18 , L = 3 (a) Period-1 Attractor : ρ 1 = −− 8
Table 14.
4
2
2858
11
7
2
4
5
0
10 13
8
14
15
1
12 = 0.75 ρ 1 = −− 16
(a) Period-1 Attractor :
18 , L = 4
(Continued )
0
0.5
φn
1
0
0.5
σ = +− 2, τ = 1
12
Gallery 18 - 2
3
φn - 1
6
2 = 0.25 ρ 2 = 2 16 −−
1
9
(b) Bernoulli (σ = +− 2, τ = 1) Period-2 Isles of Eden :
Table 14.
β>0
2859
18 , L = 5
(Continued )
21
22
15
23
13
26
30
= 0.375
27
29
Gallery 18 - 3
11
0
31
12 (a) Period-1 Attractor : ρ 1 = −− 32
Table 14.
(Continued )
14
28
25
17
3
6
10
20
9
4
8
16
Transient state
0.5
φn - 2
1
σ = −5
the length is equal to 2 .L = 10
0
σ = +5
0 1 2 3 4 5
0
0.5
φn
σ =+ − 5, τ = 2
Gallery 18 - 4
7
24
5
2
19
12
18
1
1
528
16
4 = 0.625 (b) Bernoulli (σ = +− 5, τ = 2) Period-2 Attractors : ρ 2 = 5 32 −−
T=2
β>0
18 , L = 5
Table 14.
τ=2 τ=2
2860
2861
38
37
0 1 2 3 4 5 6 7
44
24
52
39
3
60
18 , L = 6
Transient phase
36
30
30
26
27
(Continued )
33
22
0
45
18
9
11
48
51
50
13
6
21
25
57 41
0
63 42
Gallery 18 - 5
15
54
12
19
59
62
53
43
46 = 0.71875 (a) Period-1 Attractor : ρ 1 = −− 64
Table 14.
47
23
0
0
31
29
55
61
58
46
8
28
Transient state
0
0 1 2 3 4 5
0.5
σ = +− 3, τ = 1
σ = +3
0
0.5
φn
Gallery 18 - 6
34
1
35 20
14
17
4
10
32
49
40
7
5
16
2
56
1
σ = −3
φn - 1
6 = 0.28125 (b) Bernoulli (σ = +− 3, τ = 1) Period-2 Attractors : ρ 2 = 3 64 −−
(Continued )
τ=1
τ=1
16
1
β>0
18 , L = 6
Table 14.
T=2
2862
2863
50
79
100
23
21
81 49
113
4
77 78
75
74
88
7
96
5
103
39
8
17
72
99
27 29 31
14
10
48
120 104
2
53
35 98
20
0
73
40
68
86
18
12
56
3
33
82
9
97
83 51 114
76
105
13
11
41
57
89
108 92
116
19
15 124 32
80
112
6
121
64
26 30
84
22
38
Gallery 18 - 7
69 62 70 58 16 71
43
45
115
1
42 46 54
65
85
90
66
52 60
34
28
(Continued )
128 (a) Period-1 Attractor : ρ1 =128 −− = 1
36
67
44
106
24
101 37 102
25
18 , L = 7
Table 14.
119
123
118
59
117
122 0
0
0
111
0
125
109
93
107
61
95
63
55
47
127
126
91
110
87
94
2864
57
0 1 2 3 4 5 6 7 8
74
78
21
177
81
64
27
69
16
40
130
1
78
4 113
10
160
56
221
0
248
28
85
187
80
34
227
20
65
247
251
239
253
0
8
62 128
138 139
223
254
99
42
54 73
156
201
191
127
148
82
114
37
46
39
141
216
2
226 162
58
143 32
5
163
142
136
232
119
193
7
184 168
(Continued )
Gallery 18 - 8
0
255
112
224
238
14
170
131
209 241
17
29
68
116
124
71
92
23 31
197 199
84 108
198
228
164
41
147
146
Table 14.
Period-1 Attractor :
132 ρ1 = 256 −− = 0.515625
18 , L = 8 (a)
Transient phase
246
123
245
250
181
218
117
186
237
189
235
125
107
109
234
93
0
0
0
0
219
222
215
190
214
182
213
174
183
111
175
95
173
91
171
87
48
135
72
158 11
149
151
155
13
96
15
144
157 159 154 150
79 133 134
202
203
220
188
172
88 244
212 252 236
3
104
105
185
121
169 249 217
6
208 176 233 9 89
240
180
132
120
70
38
35
19
137
145
196
200
51 204
22 26
192
30
33
45
60
66
165
115
242
178
97 211
230
229
101
194 167
166 231 103
24
67
83 243 179
12
161
Gallery 18 - 9
102 153
52
129
36
195
210
18
225
σ = −2
0 1 2 3 4
σ = +2
τ=1
τ=1
204
25
152
140
76
0
0.5
φn
1
0
0.5
φn
1
0
0
0.5
σ =+ − 2, τ = 1
0.5
137
σ = +4
φn - 1
φn - 3
σ = +− 4, τ = 3
σ = −4
0 1 2 3 4 5 6 7 8
30 = 0.46875 ρ2 = 4 256 −−
2 = 0.015625 ρ 3 = 2 256 −−
122 44
86
94
118 126 106 90 110
61
43
47
55
53
63
59
(b) Bernoulli (σ = + − 4, τ = 3) Period-6 Attractors :
(c) Bernoulli (σ = + − 2, τ = 1) Period-2 Isles of Eden :
98
100
49
50
206 207 77 75 205
18 , L = 8 Transient phase T=6
(Continued )
τ=3
1
β>0 1
β>0
Table 14.
T=2
2865
2866
L. O. Chua et al.
and 1 • 22 + 1 • 21 + 0 • 20 = 6 respectively. These numbers are enclosed by small circles, and are represented as nodes of a digraph where a directed edge pointing from node Sm 1 to node Sm 2 means that bit string S1 maps to bit string S2 after one iteration under rule N . example, Gallery 18-1 shows the basin trees For ; 2m 5m ; 4m , 3m ; 1m , 6m con Γ1 18 = 7m verging to a period-1 (fixed point) orbit Γ1 18 = 0 0 means that The self-loop attached to node {}. 0 maps into itself, ad infinitum, thereby bit string 0 is a period-1 orbit. implying Each sequence of nodes along each branch of depicts successive evolutions the tree Γ1 18 2 → 5 → 0 over time. For example, the sequence translates into the space-time pattern shown in the upper right-hand corner of Table 14-1. Similarly, the 4 → 3 → 0 translates into the spacesequence time pattern shown in the lower right-hand corner. Observe that the first two rows in both spacetime patterns on the right of Gallery 18-1 represent the transient phase of the dynamic evolution; they 7 correspond to nodes belonging to the basin tree Γ1 18 . The next four rows in these two spacetime patterns correspond to the steady state, which is a period-1 orbit in this case. Whenever a basin tree Γ1 18 is not empty, 0 in steady state is the associated periodic orbit 0 called an attractor because the period-1 bit string attracts all orbits belonging to the tree Γ1 18 . We now extend this definition to period-n orbits. Definition 5. Period-n attractor. A period-n orbit
Γn N of a local rule N is said to be a period-n attractor iff it has a nonempty basin tree, i.e. = Ø (15) Γn N
It follows from Proposition 1 that every periodn orbit of a local rule N is either an attractor, or an isle of Eden. Although a period-n orbit of N contains n distinct bit strings Γn N (x), we will usually refer x, χ1N (x), χ2N (x), . . . χn−1 N k to each bit string x or χ N (x), k = 1, 2, . . . , n − 1, as a period-n attractor, or a period-n isle of Eden, respectively, to avoid clutter. In other words, a period-n attractor or isle of Eden can mean either any bit string in a “ring” orbit, or to the collection of all “n” bit strings in the “ring”.
Also listed on top of each gallery is the robustness coefficient ρi =
n ∆ ni i = L 2L n
(16)
of the ith period-n orbit (n is a generic symbol denoting the actual period of each periodic orbit)
where n( L ) denotes the total number of all bit
L composed strings in the symbolic state space of all binary bit strings of length L, and where ni denotes the total number of nodes (i.e. bit strings) in the basin of attraction of the ith period-n orbit, where i = 1, 2, . . . , m, and m is the total number of period-n orbits. In Gallery 18-1, m = 1 since there is only “one” attractor when L = i = 1 in 3.Hence, Gallery 18-1. In the basin tree Γ1 18 shown in Gallery 18-1, there are all together eight nodes and hence ni = 8. Since L = 3, we have ρ1 = 8/23 = 1. The robustness coefficient ρi in Eq. (16) measures the percentage of initial bit strings which converge to the ith attractor in question. In this case ρi = ρ1 = 1 because there is only one attractor in this example and hence all orbits must converge to 0 In general, 0 < ρi ≤ 1, where ρi = 1 correspond . to maximum robustness.
2.4.1. Highlights from Rule 18 Gallery 18-1 : L = 3, n
3
=8
There are seven basin-tree strings, all of which 0 Hence converge to the global period-1 attractor {}. 0 has maximum robustness the period-1 attractor with ρ1 = 1. Gallery 18-2 : L = 4, n
4
= 16
0 (a) There is a period-1 attractor {} with robustness coefficient ρ1 = 0.75.
, 12m }, (b) There are two period-2 isles of Eden { 3m , 9m } with a combined robustness coefand { 6m ficient ρ2 = 0.25. The dynamics on each isle of Eden is a Bernoulli στ -shift with σ1 = 2, τ = 1, or σ2 = −2, τ = 1, as depicted in the φn → φn−1 time-1 map in Gallery 18-2. Here, the red lines have
` ` ´´ Note that our definition of a basin tree Γn N does not include bit strings belonging to the associated period-n orbit ` ´ Γn N . 7
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden
slope equal to 2σ1 = 4, and the blue lines have slope equal to 2σ2 = 1/4. Both sets of parallel lines have a positive slope, implying that β > 0. Observe that the two period-2 “red” dots correspond to the decimal representation φ=
L−1
2−(i+1) xi
(17)
i=0
(defined in Eq. (2) of [Chua et al., 2006]) of bit mof the isle of Eden { 3m , 12m } on string 3mand 12 the left; namely, 3m→ 1 • 2−3 + 1 • 2−4 = 0.1875 (left red dot) 12m→ 1 • 2−1 + 1 • 2−2 = 0.75 (right red dot) Observe that the two red dots lie at the intersection of corresponding pairs of red and blue “Bernoulli” lines, thereby confirming that the dynamics on this isle of Eden can be described by a left shift of two bits (σ = 2) or, equivalently, by a right shift of two bits (σ = −2), per iteration (τ = 1), as extensively illustrated in [Chua et al., 2005a] and [Chua et al., 2006]. 5 Gallery 18-3, 18-4 : L = 5, n = 32 0 (a) There is a period-1 attractor {} with robustness coefficient ρ1 = 0.375.
(b) There are five period-2 attractors with a combined robustness coefficient ρ2 = 0.625. The dynamics on each attractor is a Bernoulli στ -shift with σ1 = 5, τ = 2, or σ2 = −5, τ = 2, as depicted in the φn−2 → φn time-2 map. The time-2 map φn−2 → φn consists of β = σ 1 2 = 32 parallel red Bernoulli lines with slope 2σ1 = 32, or equivalently, to β = 2|−σ2 | = 32 parallel blue Bernoulli lines with slope 2σ2 = 1/32. Observe that the two red dots now fall on the diagonal of the time-2 map, as expected of period-2 orbits. Again, β > 0 because the slope of each red (or blue) Bernoulli line is positive. For ease of visualization, we have displayed the space-time pattern using bit strings with double the length, namely, 2L = 10, which corresponds to shifting around the period-2 ring twice. Note m that the decimal code of the 5-bit basin tree 16 translates into the corresponding 10-bit string 528 shown in Gallery 18-4. Observe that all basin subtrees contain only one bit string, implying that all basin trees of rule 18 are gardens of Eden, when L = 5.
Gallery 18-5, 18-6 : L = 6, n
6
2867
= 64
0 (a) There is a period-1 attractor {} with robustness coefficient ρ1 = 0.71875. Note that there are 0 at three locathree blue lines joining bit string tions in the basin tree diagram. This is done to avoid clutter. The reader should interpret all three nodes 0 as representing the same node. Observe labeled also from the basin tree diagram that the longest transient regime is four iterations, such as the one depicted in the space-time pattern originating from string 30min Gallery 18-5. The shortest transient regime is one iteration; they correspond to the 15 gardens of Eden in the three “translated” subtrees joined by blue lines.
(b) There are three period-2 attractors with a combined robustness coefficient ρ2 = 0.28125. The dynamics on each attractor is a Bernoulli στ -shift with σ1 = 3, τ = 1, or σ2 = −3, τ = 1. In this case, all basin trees are gardens of Eden. Gallery 18-7 : L = 7, n
7
= 128
There are 127 basin tree strings, all of which 0 It converge to the global period-1 attractor {}. follows that we have maximum robustness with ρ1 = 1, as in Gallery 18-1. Gallery 18-8, 18-9 : L = 8, n
8
= 256
0 (a) There is a period-1 attractor {} with robustness coefficient ρ1 = 0.515625. The transient regime ranges from one iteration (corresponding to subtrees composed of garden of Edens) to five iterations, as illustrated in a typical space-time diagram starting from bit string 78min Gallery 18-8.
(b) There are four period-6 attractors with a combined robustness coefficient ρ2 = 0.46875. The dynamics on each attractor is a Bernoulli στ -shift with σ1 = 4, τ = 3, or σ2 = −4, τ = 3. The time-3 map φn−3 → φn shows β = 24 = 16 parallel Bernoulli “red” lines with slope 2σ1 = 16, or equivalently, 16 parallel Bernoulli “blue” lines with slope 2σ2 = 1/16. Observe that there are six red dots in the time-3 map, implying a period-6 attractor. Again, β > 0 because both red and blue lines have a positive slope.
2868
8
7
6
5
4
3
L
1 1 2 1 2 1 2 1 1 2 3
i
1 5 1 3 1 1 4
1 1
attractors
2
2
Eden
Number Period-n Period-n Isles of
1 1 2 1 2 1 2 1 1 6 2
n
0 0 2 0 5 0 3 0 0 4 2
σ1
1 1 1 1 2 1 1 1 1 3 1
τ1
+ + + + + + + + + + +
β1
-4 -2
-3
-5
-2
σ2
3 1
1
2
1
τ2
+ +
+
+
+
β2
ρ3 = 0.015625
ρ2 = 0.46875
ρ1 = 0.515625
ρ1 = 1
ρ2 = 0.28125
ρ1 = 0.71875
ρ2 = 0.625
ρ1 = 0.375
ρ2 = 0.25
ρ1 = 0.75
ρ1 = 1
ρ
coefficient
Summary of Qualitative properties of local rule 18 extracted from Gallery 18 for Rule 18 Number ID Number Bernoulli Parameters Robustness Period of of
(c) There are two period-2 isles of Eden with a combined robustness coefficient ρ3 = 0.015625. The dynamics on each isle of Eden is a Bernoulli στ -shift σ1 = 2, τ = 1, or σ2 = −2, τ = 1. The qualitative properties of local rule 18 extracted from the above basin-tree Galleries 18-1 to 18-9 are summarized below:
2869
Basin tree diagrams for rule 22 .
4
1
2
7
22 , L = 3
6
3
Gallery 22 - 1
0
5
(a) Period-1 Attractor : 8
8 =1 ρ 1 = −−
Basin tree diagrams for Rule 22
Table 15.
2870
8
4
13
14 0
11
7 15
10
16
2 = 0.125 ρ 2 = −−
σ = −2
0 1 2 3 4
12
σ = +2
3
τ=1
τ=1
3
0
0.5
φn
1
0
6
0.5
σ =+ − 2, τ = 1
9
2 = 0.25 ρ3 = 2 16 −−
φn - 1
(c) Bernoulli (σ = + − 2, τ = 1) Period-2 Isles of Eden :
5
(b) Period-1 Isles of Eden :
(Continued )
Gallery 22 - 2
1
2
10 = 0.625 ρ1 = 16 −−
(a) Period-1 Attractor :
T=2
22 , L = 4
Table 15.
1
β>0
Transient phase
26
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
2
1
7
13
19
26
24
12
5
18
23
0 1 2 3 4 5 6 7
20
15
3
9
21
28
6
8
Gallery 22 - 3
21
4
14
0
27
10 17
29
30
31
Transient phase
13
(Continued )
32 = 1 (a) Period-1 Attractor : ρ 1 = 32 −−
Table 15.
Transient phase
11
25
0 1 2 3 4 5 6 7
16
Transient phase
22 , L = 5
Transient phase
2871
0 1 2 3 4 5 6 7
22
22
11
2872
8
37
26
1
12
19
44
33
57 6
28
35
48
34
20
18
15
9
21
42
2 = 0.03125 ρ 2 = 64 −−
59
3
55
0
62
60
17
47
31
7
50
52
5
10
58
2
40
45
25
4 14
27
41
53
11
56
49
13
16
38
22
32
23
46
15
29
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8
62 = 0.96875 (a) Period-1 Attractor : ρ 1 = 64 −−
(Continued )
Gallery 22 - 4
54
36
61
63
24
39
(b) Period-1 Isles of Eden :
43
29
51
30
22 , L = 6
Table 15.
Transient phase Transient phase
2873
86
15
82
41
30
38
80
32
33
64
46
51
78
115
12
97
6
9
58
36
126
0
1
90
72
116
25
103
125
65
34
62
123
119
39
73
57
7
8
2
48
17
28
54
20
85
122
77 5
74
79
114
4
27
31
42
105
14
96
83
101
107
99
(Continued )
53
120
50
117
10
100
21
113
106
0 1 2 3 4 5 6 7 8
127
118
59 0
109
93
91
110 55
15
114 ρ 1 =128 −− = 0.890625
(a) Period-1 Attractor :
Gallery 22 - 5
60
66
102
67 24
63
75
111
68
56
95
61 37
92
3
16
87
84
108
18
40
124
71
112
19
43
23
76
29
89
121
45
94
47
22 , L = 7
Table 15.
Transient phase
98
44
52
35
22
69
70
49
88
104
81
11
13
0
0.5
φn
1
0
0.5
φn
1
0
0
φn - 1
φn - 1 1
1
0
0.5
φn
1
0
0.5
φn
1
0
0
0.5
φn - 2
β>0
φn - 2
β>0
σ = −1, τ = 2
0.5
σ = +1, τ = 2
1
1
σ = −1
0 1 2 3 4 5 6 7
σ = −3
0 1 2 3 4 5 6 7
σ = +3
σ = +1
104
7 = 0.109375 Period-7 Isles of Eden : ρ 3 = 2 −− 128
Gallery 22 - 6
0.5
σ = +3, τ = 1
0.5
σ = −3, τ = 1
β>0
26
β>0
(b) Bernoulli (σ = −3, σ = +3, τ = 1), (σ = +1, σ = −1, τ = 2)
(Continued )
T=7
T=7
22 , L = 7
Table 15.
88
τ=1 τ=2
τ=1 τ=2
2874
2875
89
202
77
71
58
106
67
113
95
212
11
23
152
140
107
158
47
149
116
176
4
34
223
239
17
164
191
119
187
247
148
190
128
182
61
193
162
200
94
28
134
137
229
211
8
82
41
14
233
245
0
167
56
25 208
19
154
97
109
125
250
218
35
194
53
145
226
178
22
188
122
1
2
38
197
244
142
49
44
121
37
98
146 131
7
203
84
214
16
215
73
68
254
253
136
112
151
50
161
29
101
92
13
46
69
138
26
(Continued )
169
232
209
83
43
86
0 1 2 3 4 5 6 7 8 9 10
246
123 0
219
222
255
237
189
183
111
149
154 ρ1 = 256 −− = 0.6015625
(a) Period-1 Attractor :
Gallery 22 - 7
127
238
221
251
74
79
173
32
175
168
22 , L = 8 181
21
242
70
224
52
76
163
133
64
196
184
100
91
88
235
104
42
81
139
166
172
Table 15.
Transient phase
15
96
105
155
157
72
144
159
135
48
180
205
206
207
249
9
3
6
75
236
220
217
185
150 240
252
(Continued )
60
66
126
33
231
36
12
24
195
243
18
90
103
230
179
115
0
0.5
φn
1
0 1 2 3 4 5 6 7 8
0.5
σ = +− 4, τ = 3
σ = +4
0
Gallery 22 - 8
165
110
129
30
192
210
118
55
59
63
225
45
σ = −4
φn - 3
●
14 = 0.21875 (b) Bernoulli : (σ = + −− − 4, τ = 3) Period-6 Attractors : ρ 2 = 4 256
120
132
22 , L = 8
Table 15.
Transient phase T=6
165
1
β>0 τ=3
2876
31
174
143
160
80
177
27
216
10
5
234
241
117
248
147
78
201
39
124
186
62
93
130
65
198
108
99
54
40
20
171
199
213
227
57
156
0
Transient phase
0
0.5
φn
1
51
153 51 102
85
σ = +2
0 1 2 3 4
102 204 153
σ = −2
Gallery 22 - 9
170 85
2 (e) Period-1 Isles of Eden : ρ5 = −− 256 = 0.0078125
204
τ=1
204 τ=1
0
0.5
φn
1
0
0.5
σ = +− 2, τ = 1
σ = +4
0 1 2 3 4 5 6
0.5
σ =+ − 4, τ = 2
φn - 1
σ = −4
φn - 2
10 = 0.15625 (c) Bernoulli : (σ = + −− − 4, τ = 2) Period-4 Attractors : ρ 3 = 4 256
(Continued )
T=2
2 = 0.015625 (d) Bernoulli : (σ = + −− − 2, τ = 1) Period-2 Isles of Eden : ρ4 = 2 256
228
114
87
141
22 , L = 8
Table 15.
T=4
57
1
β>0 τ=2τ=2 1
β>0
2877
2878
8
7
5 6
4
3
L
1 1 2 3 1 1 2 1 2 1 2 3 4 5
i
1 4 4
1
1 1
1 1
attractors
2 2
2
2
2 2
Eden
Number Period-n Period-n Isles of
σ1
1 0 1 0 1 0 2 2 1 0 1 0 1 0 1 _0 7 +3 1 0 6 4 4 4 2 2 1 0
n
1 1 1 1 1 1 1 1 1 1 3 2 1 1
τ1
+ + + + + + + + + + + + + +
β1
-4 -4 -2
_1 +
-2
σ2
3 2 1
2
1
τ2
+ + +
+
+
β2
ρ1 = ρ1 = ρ2 = ρ3 = ρ1 = ρ1 = ρ2 = ρ1 = ρ2 = ρ1 = ρ2 = ρ3 = ρ4 = ρ5 =
1 0.625 0.125 0.25 1 0.96875 0.03125 0.890625 0.109375 0.601563 5625 0.21875 0.15625 0.015625 0.0078125
ρ
coefficient
Summary of Qualitative properties of local rule 22 extracted from Gallery 22 for Rule 22 Number ID Number Bernoulli Parameters Robustness Period of of
The basin tree diagrams of Rule 22 for L = 3, 4, . . . , 8 are exhibited in Table 15. Following a detailed analysis of these diagrams, the qualitative properties of local rule 22 extracted from basin-tree Galleries 22-1 to 22-9 of Table 15 are summarized below:
2.4.2. Highlights from Rule 22
2879
Basin tree diagrams for rule 54 .
54 , L = 3
5
2
4 7
1
Gallery 54 - 1
0
3
(a) Period-1 Attractor : ρ1 = −− =1 8
6
Basin tree diagrams for Rule 54 8
Table 16.
1
2
(a) Bernoulli (σ = + − 2, τ = 2)
11
14
7
13
4
8
0
0.5
φn
1
0
σ = +2
0 1 2 3 4 5 6 7 8 σ = −2
φn - 2
8
1
6
9
0
0.5
φn
1
0
0.5
σ = +− 2, τ = 1
φn - 1
1
0
15
5
10
4 = 0.25 (c) Period-1 Attractor : ρ3 = 16 −−
12
3
Gallery 54 - 2
0.5
σ = +− 2, τ = 2
2 Period-2 Isles of Eden : ρ2 = 2 −− 16 = 0.25
(b) Bernoulli (σ = + − 2, τ = 1)
(Continued )
β>0
4 Period-4 Isles of Eden : ρ 1 = 2 −− 16 = 0.5
54 , L = 4
T=4
β>0
Table 16.
τ=2 τ=2
2880
2881
23
21
27
8
4
0
11
28
14
54 , L = 5
3
17
20
10 31
26
9
5
(Continued )
25 16
18
15
12
22
19
13
1
30
Gallery 54 - 3
6
24
7
2
29
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
32 (a) Period-1 Attractor : ρ1 = −− 32 = 1
Table 16.
Transient phase Transient phase
22
30
2882
19
11
37
41
60
0
30
(Continued )
27
3
33
26
39
24
36
18
12
51
13
25
63
44
42
48
6
15
57
38
50
52
54
22
Gallery 54 - 4
9
21
34 (a) Period-1 Attractor : ρ 1 = −− 64 = 0.53125
45
54 , L = 6
Table 16.
Transient phase Transient phase
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
52
44
49
56
28
46
23
43 8
55
35
1
62
61
59
0 Transient phase
0
0.5
φn
1
Gallery 54 - 5
29
20
34
7 2
58
16
47
40
14
5
53 4
31
17
32
10
0 1 2 3 4 5 6 7 8 9
σ=0
0.5
σ = 0, τ = 4
5 = 0.46875 (b) 6 Period-4 Attractors : ρ 2 = 6 64 −−
(Continued )
T=4
54 , L = 6
Table 16.
φn - 4
β>0
46
1
τ=4
2883
2884
54 , L = 7
0
37
74
(Continued )
127
41
42
Gallery 54 - 6
82
21
84
9 = 0.0703125 (a) Period-1 Attractor : ρ1 = 128 −−
Table 16.
97
94
0 1 2 3 4 5 6 7 8 9 10
σ=0
64
18
12
115
63
70
112
47
118
38
33
76
109
89
30
51
45
114
105
101
0 1 2 3 4 5 6 7 8 9 10
32
9
6
121
80
15
116
35
σ=0
95
86
44
56
87
59
19
108
57
22
τ=4
44
Transient phase
16
68
3
124
40
71
58
81
0 1 2 3 4 5 6 7 8 9 10
111
43
σ=0
28
107
93
73
54
92
11
108
8
34
65
62
20
99
29
104
Transient phase
119
0 1 2 3 4 5 6 7 8 9 10
14
117
110
85 100
27
46
69
σ=0
4
17
96
31
10
113
78
52
Gallery 54 - 7
T=4
70
T = 4 Transient phase
85
123
106
7
122
55
50
77
23
98
17 = 0.9296875 (b) 7 Period-4 Attractors : ρ2 = 7128 −−
τ=4
88
τ=4
(Continued )
T=4
54 , L = 7
T = 4 Transient phase
Table 16.
τ=4
2885
1
0
0.5
φn
2
72
48
79
5
120
39
26
0
67
61
91
25
0.5
σ = 0, τ = 4
125
53
102
75
49
φn - 4
β>0
1
36
24
103
66
60
83
13
1
126
90
2886
54 , L = 8
0
141
27
(Continued )
41
73
85
255
148
146
99
74
37
108
Gallery 54 - 8
198
82
164
54
170
177
216
20 = 0.078125 (a) Period-1 Attractor : ρ 1 = 256 −−
Table 16.
251
84
254
125
245
81
1
4
131
187 238
14
54 , L = 8
17 68
68 17
(Continued )
56
238 187
224
16
64
95
239
69
215
191
21 247
2
8
7
119 221
28
34 136
136 34
112
221 119
193
32
128
42
190
127
138
175
223
Gallery 54 - 9
168
253
250
235
162
0
0.5
φn
1
0 1 2 3 4 5 6 7 8 9 10 11 12
σ = −2
0
0.5
σ = +− 2, τ = 2
σ = +2
φn - 2
24 = 0.1875 (b) Bernoulli (σ = + −− − 2, τ = 2) 2 Period-4 Attractors : ρ 2 = 2 256
Table 16.
Transient phase T=4
1
138
β>0 τ=2 τ=2
2887
133
174
10
234
88
181
78
241
31
228
91
52
67
160
54 , L = 8
(Continued )
194
87
5
117
44
218
39
248
143
114
173
26
161
97
109
147
124
199
57
13
208
40
176
213
65
93
11
182
201
62
227
156
107
134
104
Gallery 54 - 10
80
171
130
186
22
214
0
σ = −4
0.5
φn - 2
σ = +4
σ = +− 4, τ = 2
Transient 0 1 phase 2 3 20 4 5 6 7 8 9 10 11 12
0
0.5
φn
1
14 = 0.21875 (c) Bernoulli (σ = + −− − 4, τ = 2) 4 Period-4 Attractors : ρ3 = 4 256
Table 16.
T=4
1
109
β>0 τ=2 τ=2
2888
2889
185
70
233
222
172
45
77
30
243
33
12
103
152
229
94
137
118
192
18 63
220
212
210
(Continued )
111
244
86
150
166
15
249 144
6
96
9 159
230
106
105
101
246
240
79
53
167
207
120
123
178
180
25
50
132
48
157
98
151
121
3
72 252
43
115
189
211
89
90
154
110
140
145
75 83
183
135
122
Gallery 54 - 11
179
76
242
47
196
59
205
38
217
(d) Bernoulli (σ = + − 4, τ = 3) 4 Period-6 Attractors : 155
35
100
202
237
225
158
54 , L = 8
Table 16.
60
231 66
24
206
49
203
188
19
236
129
36 126
169
165
149
219
195
61
200
55
28 = 0.4375 ρ 4 = 4 256 −−
0
σ = +4
0.5
σ =+ − 4, τ = 3
0 Transient 1 2 phase 3 4 5 6 7 8 9 10 11 12
0
0.5
φn
1
σ = −4
φn - 3
(d) Bernoulli (σ = + − 4, τ = 3) 4 Period-6 Attractors (continued) :
155
1
46 197
92
29
184
226
232
58
23
71
0
0.5
φn
1
0
0.5
φn
1
0
0
153
102
1
1
2 = 0.015625 ρ 6 = 2 256 −−
Gallery 54 - 12
51
204
φn - 1
φn - 1
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0
0.5
φn
1
0
0.5
σ = +− 2, τ = 1
σ = +3
φn - 1
σ = −3
8 = 0.0625 ρ 5 = 2 256 −−
2 Period-2 Isles of Eden :
0.5
σ = +3, τ = 1
0.5
σ = −3, τ = 1
(f) Bernoulli (σ = + − 2, τ = 1)
113
139
163
116
142
209
(e) Bernoulli (σ = −3, σ = +3, τ = 1) 2 Period-8 Isles of Eden :
(Continued )
β>0 β>0
Table 16.
T=8
T=8
54 , L = 8
T=6
β>0 τ=3 τ=3
232
184
τ=1 τ=1 1
β>0
2890
2891
8
7
5 6
4
3
L
1 1 2 3 1 1 2 1 2 1 2 3 4 5 6
i
1 1 1 6 1 7 1 2 4 4
1
attractors
2 2
2 2
Eden
Number Period-n Period-n Isles of
1 4 2 1 1 1 4 1 4 1 4 4 6 8 2
n
0 2 2 0 0 0 0 0 0 0 2 4 4 3 2
σ1
1 2 1 1 1 1 4 1 4 1 2 2 3 1 1
τ1
+ + + + + + + + + + + + + + +
β1
-2 -4 -4 -3 -2
-2 -2
σ2
2 2 3 1 1
2 1
τ2
+ + + + +
+ +
β2
ρ1 = ρ1 = ρ2 = ρ3 = ρ1 = ρ1 = ρ2 = ρ1 = ρ2 = ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = ρ6 =
1 0.5 0.25 0.25 1 0.53125 0.46875 0.0703125 0.929688 6875 0.078125 0.1875 0.21875 0.4375 0.0625 0.015625
ρ
coefficient
Summary of Qualitative properties of local rule 54 extracted from Gallery 54 for Rule 54 Number Period Bernoulli Parameters Robustness ID Number of of
The basin tree diagrams of Rule 54 for L = 3, 4, . . . , 8 are exhibited in Table 16. Following a detailed analysis of these diagrams, the qualitative properties of local rule 54 extracted from basin-tree Galleries 54-1 to 54-12 of Table 16 are summarized below:
2.4.3. Highlights from Rule 54
2892
Basin tree diagrams for rule 73 .
7
73 , L = 3
0
4
2
3
6
5
3 = 0.375 ρ2 = −− 8
(b) Period-1 Isles of Eden :
Gallery 73 - 1
1
5 = 0.625 ρ1 = −− 8
(a) Period-2 Attractor :
Basin tree diagrams for Rule 73
Table 17.
15
0
13
5
10
14
8 = 0.5 ρ 1 = 16 −−
(a) Period-2 Attractor :
73 , L = 4
12
6
3
Gallery 73 - 2
7
11
9
4 = 0.25 ρ 2 = 16 −−
(b) Period-1 Isles of Eden : (σ = + − 2, τ = 1)
(c) Bernoulli
1
0
8
1
0 1 2 3
φn - 1
σ = −2
0.5
σ =+ −2, τ = 1
σ = +2
0
0.5
φn
2
2 = 0.25 ρ 3 = 2−− 16
8
4
Period-2 Isles of Eden :
T=2
(Continued )
τ=1
Table 17.
1
β>0 τ=1
2893
30
25
19
31
15
18
9
29
0
5
28
20
10
23
14
27
22
11
21
26
13
6
3
17
24
12
16
8
4
2
1
0 1 2 3 4 5 6
Transient phase
0 1 2 3 4 5 6
Transient phase
0 1 2 3 4 5 6
Transient phase
16
4
2
3 = 0.46875 (b) Period-2 Attractors : ρ2 = 5 32 −−
(Continued )
Gallery 73 - 3
7
17 = 0.53125 (a) Period-2 Attractor : ρ 1 = −− 32
73 , L = 5
Table 17.
T=2
T=2 T=2
2894
2895
61
23
31
5
53
16
17
55
73 , L = 6
(Continued )
4
7
1 28
15
9
21
49
20
57
29
18 51
0
63
30
42
39
36
35
56
60
8
59
34
2
43
40
62
47
58
45
37 33
27
11
12
41
3
54
22
24
6
44
19
13
25
48
38
26
52 50
7 = 0.328125 ρ 2 = 3 64 −−
(b) Period-1 Attractors :
Gallery 73 - 4
14
32
10
46
43 = 0.671875 (a) Period-2 Attractor : ρ 1 = −− 64
Table 17.
2896
117
62
31
107
17
34
127
4
8
73 , L = 7
(Continued )
122
113
99
124
72
0
74
79
120 2
21
42
84
71
16
68
87
60
82
1
30
61
36
64
103
18
47
94
115
Gallery 73 - 5
37
41
15
32
9
121
44 = 0.34375 (a) Period-2 Attractor : ρ 1 = 128 −−
Table 17.
98
49
88
44
22
11
69
104
52
26
13
70
35
81
2 = 0.109375 ρ 2 = 7128 −−
(b) Period-2 Isles of Eden :
2897
14
67
112
28
110
106
91
90
118
86
93
85
96
24
6
65
73 , L = 7
100
10
116
78
46
83
75
123
25
66
29
114
126
38
80
95
73
20
92
119
(Continued )
55
53
109
45
59
43
48
12
3
50
5 39
23
105
101
125
76
33
58
57
63
19
40
Gallery 73 - 6
7
97
56
111
9 = 0.4921875 ρ3 = 7128 −−
(c) Period-3 Attractors :
Table 17.
108
54
27
77
102
51
89
Isles of Eden : 7 = 0.0546875 ρ4 =128 −−
(d) Period-1
1
113
124
84
29
2
226
248
168
58
23
16
209
69
199
46
32
163
138
143
4
197
8
227
162
232
92
64
139
71
21
31
184
128
142
42
62
0
0.5
φn
1
Gallery 73 - 7
241
81
116
0
1
92
σ = −4
φn - 3 Transient phase 0 1 2 3 4 5 6 7 8 9 10 11 12 σ = +4
0.5
σ = +−4, τ = 3
10 = 0.15625 (a) Bernoulli (σ = +− 4, τ = 3) Period-6 Attractors : ρ 1 = 4 256 −−
(Continued )
T=6
73 , L = 8
Table 17.
τ=3
β>0 τ=3
2898
117
7
93
193
87
112
213
28
80
20
5
65
114
223
156
247
39
253
201
127
160
40
10
130
228
191
57
239
78
251
147
254
0
σ=0
0.5
σ = 0, τ = 3
φn - 3
5 = 0.15625 ρ 2 = 8 256 −−
Transient phase 0 1 2 3 4 5 6 7 8 9 10 11 12
0
0.5
φn
Gallery 73 - 8
234
14
186
131
174
224
171
56
1
(b) Bernoulli (σ = 0, τ = 3) Period-3 Attractors :
(Continued )
T=3
73 , L = 8
Table 17.
1
251
β>0 τ=3
2899
2900
15
105
111
195
90
219
240
150
246
60
165
189
96
24
6
129
(Continued )
118
106
9
101
154
66
89
110
249
103
79
47
203 126 211 155
217
242 144 159 244 166 230
86
169
36
188 231 61 185
157
192
48
12
3
212
18
202
53
132
178
77
33
172
83
72
233
229
94 243 158 220
206
151 252 167 55
179
205
63
236
121 207 122 115
59
Gallery 73 - 9
30
210
222
135
180
183
225
45
237
120
75
123
43
12 = 0.375 (c) Period-3 Attractors : ρ 3 = 8 256 −−
149
73 , L = 8
Table 17.
T=3
T=3
Transient phase 0 1 2 3 4 5 6 7 8 9 10 11 12
Transient phase 0 1 2 3 4 5 6 7 8 9 10 11 12
252
121
2901
107
218
182
173
99
216
54
141
104
11
26
194
134
176
161
44
73 , L = 8
98
196
Gallery 73 - 10
208
22
70
52
145
35 198
177
133
76
49
214
181
13
152
200
38
97
100
67
88
50
108
27
25
6 = 0.1875 ρ 4 = 8256 −−
19
109
91
Period-2 Attractors :
(Continued )
137
140
(d)
Table 17.
204
102
51
153
4 = 0.015625 ρ 5 = 256 −−
(e) Period-1 Isles of Eden :
146
37
85
221
73
0
119
164
0
0.5
φn
1
0
0.5
σ =+ −2, τ = 1
245
95
175
250
φn - 1
17
136
0 1 2 3 4 5 6 7 8 σ = +2
1
68
34
125
215
190
235
17
6 = 0.046875 ρ 7 = 2 256 −−
(g) Bernoulli (σ = +− 2, τ = 1) Period-2 Attractors :
(Continued )
Gallery 73 - 11
82
41
238
148
170
187
16 = 0.0625 ρ 6 = 256 −−
(f) Period-2 Attractor :
74
255
73 , L = 8
Table 17.
T=3
β>0
τ=1 σ = −2
τ=1
2902
2903
8
7
5 6
4
3
L
i 1 2 1 2 3 1 2 1 2 1 2 3 4 1 2 3 4 5 6 7
1 2
4 8 8 8
7
1 5 1 3 1
1
1
attractors
4
7
7
4 2
3
Eden
Number Period-n Period-n Isles of
2 1 2 1 2 2 2 2 1 1 2 3 1 6 3 3 2 1 2 2
n 0 0 0 0 2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 2
σ1 1 1 1 1 1 1 2 1 1 1 2 3 1 3 3 3 2 1 1 1
τ1 + + + + + + + + + + + + + +
β1
-2
-4
-2
σ2
1
3
1
τ2
+
+
+
β2
ρ1 = ρ2 = ρ1 = ρ2 = ρ3 = ρ1 = ρ2 = ρ1 = ρ2 = ρ1 = ρ2 = ρ3 = ρ4 = ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = ρ6 = ρ7 =
0.625 0.375 0.5 0.25 0.25 0.53125 0.46875 0.671875 0.328115 0.34375 0.109375 0.492188 1875 0.0546875 0.15625 0.15625 0.375 0.1875 0.015625 0.0625 0.046875
ρ
coefficient
Summary of Qualitative properties of local rule 73 extracted from Gallery 73 for Rule 73 Number Bernoulli Parameters Robustness Period ID Number of of
The basin tree diagrams of Rule 73 for L = 3, 4, . . . , 8 are exhibited in Table 17. Following a detailed analysis of these diagrams, the qualitative properties of local rule 73 extracted from basin-tree Galleries 73-1 to 73-11 of Table 17 are summarized below:
2.4.4. Highlights from Rule 73
2904
Basin tree diagrams for rule 90 .
3
0
90 , L = 3
4
7
2
Gallery 90 - 1
5
2 =1 (a) Period-1 Attractors : ρ 1 = 4 −− 8
6
Basin tree diagrams for Rule 90
Table 18.
1
2905
12
11
6
14
90 , L = 4
(Continued )
9
1
15
10
3
4
0
8
7
0 1 2 3
2
13
0 1 2 3
Gallery 90 - 2
Transient phase
5
Transient phase
16 = 1 (a) Period-1 Attractor : ρ 1 = −− 16
Table 18.
6
Transient phase
4
0 1 2 3
7
6
9
Transient phase
22
16
15
0 1 2 3 4 5 6 7 8
25
90 , L = 5
T=3
2906
(Continued )
11
8
3
20
22
23
21
17
10 27
26
24
5 29
7
13
1
12
18 30
0
31
2 (b) Period-1 Attractor : ρ 2 = −− 32 = 0.0625
14
2
Gallery 90 - 3
28
4
6 = 0.9375 (a) Period-3 Attractors : ρ 1 = 5 −− 32
Table 18.
19
2907
45
0
7
56
21
63
90 , L = 6
(Continued )
18
42
9
35
14
28
36
Gallery 90 - 4
54
27
49
4 = 0.25 (a) Period-1 Attractors : ρ 1 = 4−− 64
Table 18.
58
48
52
σ = 3, τ = 1 OR σ = −3, τ = 1
33
11
σ = 3, τ = 1 OR σ = −3, τ = 1
37
26
OR σ = 3, τ = 1
σ = −3, τ = 1
47
16
51
57
40
90 , L = 6
(Continued )
22
30
43
15
32
5
41
3
62
1
53
31
12
38
6
44
2
61
39
25
34
19
17
23
60
20
10
Transient phase
Transient phase
Transient phase
σ = −3
0 1 2 3 4 5 6
σ = −3
0 1 2 3 4 5 6
σ = −3
0 1 2 3 4 5 6
σ = +3
σ = +3
σ = +3
τ=1 τ=1
33
τ=1 τ=1
3
τ=1 τ=1
47
Gallery 90 - 5
13
24
σ = 3, τ = 1 OR σ = −3, τ = 1
29
OR σ = 3, τ = 1
50
8
46
σ = −3, τ = 1
55
4
59
σ = 3, τ = 1 OR σ = −3, τ = 1
0
0.5
φn
1
0
0.5
σ =+ − 3, τ = 1
8 = 0.75 (b) Bernoulli (σ = + − 3, τ = 1) Period-2 Attractors : ρ2 = 6 −− 64
Table 18.
T=2
T=2
T=2
2908
φn - 1
1
β>0
103
37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
60
24
67
102
90
91
(Continued )
1
79
74
126
36
120
48
25
66
61
7
77
53
55
1
50
5
122
113
96
2
14
27
106
62
42
123
17
99
65
100
10
117
Gallery 90 - 6
125
72
31
21
110
28
54
85
93
4
119
34
107
73
20
0 1 2 3 4 5 6 7 8
14 = 0.765625 (a) Bernoulli (σ = 0, τ = 7) Period-7 Attractors : ρ 1 = 7128 −−
Table 18.
Transient phase
T=7
90 , L = 7
Transient phase
T=7
2909
8
62
124
84
0 1 2 3 4 5 6 7 8
71
3
56
108
43
59
(Continued )
121
56
41
111
68
6
15
19
40
87
112
89
86
118
16
38
80
47
30
12
32
97
51
45
63
18
0
0.5
φn
1
76
33
94
Gallery 90 - 7
95
9
115
82
109
0
0 1 2 3 4 5 6 7 8
0.5
σ = 0, τ = 7
64
(a) Bernoulli (σ = 0, τ = 7) Period-7 Attractors (continued)
Table 18.
Transient phase
T=7
90 , L = 7
Transient phase
T=7
2910
φn - 7
1
64
49
44
σ = −5
0 1 2 3 4 5 6 7 8
58
78
σ = +2
69
τ=1
1
0
0.5
φn
τ=1
88
105
83
11
Table 18.
(Continued )
0
22
29
88
0.5
φn - 1 1
81
70
σ = +5
0 1 2 3 4 5 6 7 8
75
46
σ = −2
τ=1
τ=1
52
52
114
57
26
0
0.5
φn
1
0
13
23
35
0.5
φn - 1
σ = −2, σ = +5, τ = 1
92
101
104
Gallery 90 - 8
σ = +2, σ = −5, τ = 1
39
116
98
14 = 0.21875 ρ2 = 2128 −−
(b) Bernoulli (σ = + −2 , σ = −+5 , τ = 1) Period-7 Attractors :
β>0
90 , L = 7
Transient phase
T=7
Transient phase
T=7
2911
1
β>0
0
127
= 0.015625
2 ρ3 = 128 −−
(c) Period-1 Attractor :
167
(a) Period-1 Attractor : ρ = 256 −− = 1 256
(Continued )
148 1 88 193 107 133 122 242 227 13 182 62 168 208 47 145 73 156 99 87 196 110 28 138 117 253 54 201 2 230 179 59 223 32 76 119 235 70 19 80 5 190 25 213 185 128 236 65 175 127 49 34 136 42 100 169 154 20 250 247 86 207 155 252 206 101 8 93 162 139 116 3 237 184 85 67 22 48 222 33 159 188 71 135 120 202 96 233 39 45 18 210 232 189 52 221 53 97 114 66 204 240 158 203 7 141 165 23 219 216 142 82 90 113 37 153 36 248 173 15 112 218 249 143 6 83 172 255 0 174 212 81 129 140 115 251 195 126 4 102 43 217 38 150 246 64 21 95 10 105 9 163 191 92 60 51 234 160 197 58 55 17 24 98 111 144 225 245 12 30 231 75 180 157 77 89 200 46 63 192 178 170 29 166 243 69 16 106 149 186 123 209 214 226 131 72 239 40 198 132 183 124 50 68 238 41 103 125 147 244 152 205 1 130 108 11 161 94 215 57 187 0 84 35 56 199 1 26 171 254 146 228 109 2 118 220 14 27 78 177 79 229 3 91 137 194 176 44 61 4 31 164 241 104 151 121 211 5 224 74 6 134 181
90 , L = 8
Table 18.
173
Transient phase
Gallery 90 - 9
Transient phase
0 1 2 3 4 5 6
Transient phase
0 1 2 3 4 5 6
Transient phase Transient phase
2912
0 1 2 3 4 5 6
0 1 2 3 4 5 6
109
227
129
189
2913
8
7
6
5
3 4
L
1 1 1 2 1 2 1 2 3 1
i
4 1 5 1 4 6 7 2 1 1
attractors
Eden
Number Period-n Period-n Isles of
1 1 3 1 1 2 7 7 1 1
n
0 0 0 0 0 3 0 _2 + 0 0
σ1
1 1 3 1 1 1 1 1 1 1
τ1
+ + + + + + + + + +
β1
1 1
_ +5
τ2
-3
σ2
+
+
β2
ρ1 = 1
ρ3 = 0.015625
ρ2 = 0.21875
ρ1 = 0.765625
ρ2 = 0.75
ρ1 = 0.25
ρ2 = 0.0625
ρ1 = 0.9375
ρ1 = 1
ρ1 = 1
ρ
coefficient
Summary of Qualitative properties of local rule 90 extracted from Gallery 90 for Rule 90 Number Bernoulli Parameters Robustness ID Number Period of of
The basin tree diagrams of Rule 90 for L = 3, 4, . . . , 8 are exhibited in Table 18. Following a detailed analysis of these diagrams, the qualitative properties of local rule 90 extracted from basin-tree Galleries 90-1 to 90-9 of Table 18 are summarized below:
2.4.5. Highlights from Rule 90
2914
Basin tree diagrams for rule 105 .
105 , L = 3
2
4
1 7
Gallery 105 - 1
0
8 =1 (a) Period-2 Attractor : ρ 1 = −− 8
6
3 5
Basin tree diagrams for Rule 105
Table 19.
3 6
0 1 2 3 4
σ = −2
0 1 2 3 4
σ = −2
8 4
σ = +2
14 τ=1 τ=1
τ=1 τ=1
1
σ = +2
2 1
0
0.5
φn
1
0
9
φn - 1
11
13
1
7
0
15
(b) Period-2 Isles of Eden : 2 = 0.25 ρ2 = 2 16 −−
0
0.5
φn
1
0
5
0.5
τ=1
τ=1
10
φn - 1
σ = +1
σ = +− 1, τ = 1
σ = −1
0 1 2 3 4
10
Bernoulli (σ = + − 1, τ = 1) shift :
Gallery 105 - 2
0.5
σ = +− 2, τ = 1
14
2 = 0.5 ρ 3 = 4 16 −−
β>0
(c) Period-2 Isles of Eden: Bernoulli (σ = + − 2, τ = 1) shifts :
12
1 (a) Period-1 Isles of Eden : ρ 1 = 4 −− 16 = 0.25
(Continued )
T=2
Table 19.
1
β>0
105 , L = 4
T=2
T=2
2915
28
29
30
8
11
23
20
5
7
3
25
0
0.5
φn
1
0
16
0.5
σ = 0, τ = 3
6
4
φn - 3
1
16
0
31
2 = 0.0625 ρ2 = 32 −−
(b) Period-2 Isle of Eden :
σ=0 β0
T=4 β>0
T=4 β>0
σ = −4
σ = −4
σ = −4
160
240
τ=2 τ=2
216
τ=2 τ=2 τ=2 τ=2
2925
2926
0 1 2 3 4
σ = −2
221
34
119
136
σ = +2
238
17
τ=1
τ=1
221
187
68
0
0.5
σ = +− 2, τ = 1
φn - 1
σ = +2
τ=1
τ=1
34
1
0 1 2 3 4
170
0.5
φn - 1
τ=1
τ=1
170
1
255
0
(f) Period-2 Isle of Eden 2 = 0.0078125 ρ6 = 256 −−
0
0.5
0
σ = +1 σ = −1 σ =+ − 1, τ = 1 1 φn
Gallery 105 - 13
0
0.5
φn
1
σ = −2
0 1 2 3 4
85
Period-2 Isle of Eden 2 = 0.0078125 ρ5 = 256 −−
(d) 2 Bernoulli (σ = + − 2, τ = 1) Period-2 Isles of Eden 2 = 0.03125 ρ 4 = 4 256 −−
T=2
T=2
153
51
102
β>0
204
(e) Bernoulli (σ = + − 1, τ = 1)
4 = 0.015625 Period-1 Isles of Eden ρ 3 = 256 −−
(Continued )
T=2
105 , L = 8 (c)
Table 19.
β>0
2927
8
7
6
5
4
3
L
1 1 2 3 1 2 1 2 1 2 3 1 2 3 4 5 6
i
1 1
1
attractors
1 7 2 48 12 4 4 1 1
4 2 4 5 1
Eden
Number Period-n Period-n Isles of
2 1 2 2 6 2 2 2 2 14 14 4 4 1 2 2 2
n
0 0 1 2 0 0 0 1 0 0 1 0 4 0 2 1 0
σ1
1 1 1 1 3 1 1 1 1 7 2 1 2 1 1 1 1
τ1
_ + + + _ _ _ + _ + + + + + + + _
β1
1 1
2
-4 -2 -1
2
1
1 1
τ2
-1
-1
-1 -2
σ2
+ +
+
+
+
+ +
β2
ρ1 = ρ1 = ρ2 = ρ3 = ρ1 = ρ2 = ρ1 = ρ2 = ρ1 = ρ2 = ρ3 = ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = ρ6 =
1 0.25 0.25 0.5 0.9375 0.0625 0.5 0.5 0.015625 0.765625 0.21875 0.75 0.1875 0.015625 0.03125 0.0078125 0.0078125
ρ
coefficient
Summary of Qualitative properties of local rule 105 extracted from Gallery 105 for Rule 105 Number Bernoulli Parameters Robustness Period ID Number of of
The basin tree diagrams of Rule 105 for L = 3, 4, . . . , 8 are exhibited in Table 19. Following a detailed analysis of these diagrams, the qualitative properties of local rule 105 extracted from basin-tree Galleries 105-1 to 105-13 of Table 19 are summarized below:
2.4.6. Highlights from Rule 105
2928
Basin tree diagrams for rule 122 .
122 , L = 3
0
1
3
2
=1 ρ 1 = −− 8
Gallery 122 - 1
6
7
5
(a) Period-1 Attractor :
4
Basin tree diagrams for Rule 122 8
Table 20.
2929
0
0
0.5
β>0
φn - 1 1
0
2
0.5
1
4
1
β>0
φn - 1
10
σ = +−1, τ = 1
8
5
6 = 0.375 ρ 2 = 16 −−
Period-2 Attractor :
Gallery 122 - 2
0
0.5
0.5
1
φn
σ =+ −2, τ = 1
11
14
(Continued )
(b) Bernoulli (σ = + − 1, τ = 1)
φn
1
7
13
2 = 0.25 ρ1 = 2 16 −−
(a) Bernoulli (σ = + − 2, τ = 1) Period-2 Isles of Eden :
122 , L = 4
Table 20.
3
6
0
15
9
12
6 = 0.375 ρ 3 = 16 −−
(c) Period-1 Attractor :
2930
10
5
18
2
1
20
8
4
9
12
13
24
26
17
21
3
11
6
22
30
29
27
23
15
19
7
14
28
25
Transient phase
0
0.5
σ = 0, τ = 2
σ=0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
0.5
φn
1
(Continued )
φn - 2
Gallery 122 - 3
T=2
16
(a) Bernoulli (σ = 0, τ = 2) 6 = 0.9375 Period-2 Attractors : ρ 1 = 5 32 −−
122 , L = 5
Table 20.
1
8
τ=2
0
31
2 = 0.0625 ρ 2 = −− 32
(b) Period-1 Attractor :
0
0.5
φn
1
0
0.5
σ = +−3, τ = 1
30
60
24
12
57
48
φn - 1
β>0 1
33
3
39
51
6
15
4 = 0.1875 ρ 1 = 3 64 −−
Period-2 Attractors :
σ = −3
0 1 2 3 4 5 6 7
σ = +1
11
29
58
τ=1 τ=1
32
41
19
55
0
47
22
25
28
9
56
32
Gallery 122 - 4
σ = +3
48
38 = 0.59375 ρ 3 = −− 64
Attractor :
(c) Period-1
σ = −1
0 1 2 3 4
Transient phase
14 = 0.21875 ρ 2 = −− 64
Transient phase
(a) Bernoulli (σ = +− 3, τ = 1)
(Continued )
(b) Bernoulli (σ = +− 1, τ = 1) Period-2 Attractor :
T=2
122 , L = 6
T=2
Table 20.
τ=1
τ=1
2931
17
13
62
18
50
63
5
42
20
35
54
45
7
61
26
2
8
1
43
36
27
23
34
21
40
16
53
49
14
46
10
44
31
59
4
38
37
52
2932
0
65
39
62
20
83
57
10
119
100
4
99
93
73 114
8
111 56 43
84 68
40
16
113
14
106
96 31
110
123
21
17
104
98
49
27
53
50
92
125
7
29
26
61
51
48
120
105
55
88
102
89
47
79
36
90 37
32
1
46
91
60
23
58
116
24
103
64
76
12
109
33
63
30
115
0 1 2 3 4 5 6 7 8
ρ1 = 1
(a) Period-1 Attractor :
25
18
82
126
13
45
97
66
67
44
94
9
80
38
70
41
22
86
112
95
75
Gallery 122 - 5
2
5
77 122
72 74
52
117
127
6
(Continued )
15 118
121
11
35
34 81 87 69 42 85 108 107 28 54
59
78 101 19
124 71
3
122 , L = 7
Table 20.
Transient phase
1
2933
251
14
253
7
216 175 19 143 83 70 86
55 208 233
88 188 103
113 116 218
37 117
(Continued )
87 82
94 179
54 196 235 227 212 145 149
127
193
73 93
182
47 217
29
92
205 52 122
22
254 108 137 215 199 169 35 43
155 104 244
44
146 186 184 58 109 131
Gallery 122 - 6
23
71
100 53 248 49 250 141 13 115 158 223 118 203 133 112 173
101
174 164
142 46
200 106 241 98 245 27 26 230 61 191 236 151 11 224 91
202
239
134 185 79
50 154 125 152
247
190
77 76
67 220 167
25
157 242 97 28 107 209 197 213 148
99
62
89
59 229 194 56 214 163 139 171 41
198
124
178
40 = 0.625 (a) Bernoulli (σ = + −− − 4, τ = 3) Period-6 Attractors : ρ1 = 4 256
177 95 38 31 166 140 172
110 161 211
176 121 206
226 232 181
74 234
122 , L = 8
Table 20.
0
σ = −4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
σ = +−4, τ = 3
Transient phase
0
0.5
φn
1
1
133
σ = +4
φn - 3
66
72
(Continued )
165
180
219
123
90
36
231
60
102
204
135
252
189
24
195
0
120
129
126
207
48
3
183
75
132
255
(b) Period-1 Attractor :
Table 20.
Gallery 122 - 7
(a) Bernoulli (σ = +− 4, τ = 3) Period-6 Attractors (continued) :
122 , L = 8
T=6
β>0 τ=3
τ=3
2934
192
30
15
96 6
243
249
12
33
210
237
63
225
51
153
240
159
246
105
144
222
111
45
150
54 = 0.2109375 ρ2 = 256 −−
18
9
2935
17
1
21
81
0 1 2 3 4 T=2 5 σ = −1
10
160
Transient phase
4
64
68
40
σ = +1
69
170
84
130
16
138
85
168
2
0
0.5
φn
1
0
0.5
σ =+ −1, τ = 1
128
8
1
β>0
φn - 1
T=2
Transient phase
114
39
228
78
0
0.5
φn
1
0
0.5
φn - 1
1
β>0
τ=1 τ=1
57
201
156
147
57
σ = +2
119
238
σ =+ −2, τ = 1
0 1 2 3 σ = −2
221
187
(d) Bernoulli (σ = +− 2, τ = 1) 6 = 0.046875 Period-2 Attractors : ρ4 = 2 256 −−
(Continued )
Gallery 122 - 8
34
65
20
136
162
42
τ=1 τ=1
1
5
80
32
(c) Bernoulli (σ = + − 1, τ = 1) 30 = 0.1171875 Period-2 Attractor ρ 3 = 256 −−
122 , L = 8
Table 20.
2936
8
7
6
5
4
3
L
1 1 2 3 1 2 1 2 3 1 1 2 3 4
i
1 1 5 1 3 1 1 1 4 1 1 2
1
attractors
2
Eden
Number Period-n Period-n Isles of
1 2 2 1 2 1 2 2 1 1 6 1 2 2
n
0 2 1 0 0 0 3 1 0 0 4 0 1 2
σ1
1 1 1 1 2 1 1 1 1 1 3 1 1 1
τ1
+ + + + + + + + + + + + + +
β1
-1 -2
-4
-3 -1
-2 -1
σ2
1 1
3
1 1
1 1
τ2
+ +
+
+ +
+ +
β2
ρ1 = ρ1 = ρ2 = ρ3 = ρ1 = ρ2 = ρ1 = ρ2 = ρ3 = ρ1 = ρ1 = ρ2 = ρ3 = ρ4 =
1 0.25 0.375 0.375 0.9375 0.0625 0.1875 0.21875 0.59375 1 0.625 0.210938 9375 0.117188 1875 0.046875
ρ
coefficient
Summary of Qualitative properties of local rule 122 extracted from Gallery 122 for Rule 122 Number ID Number Bernoulli Parameters Robustness Period of of
The basin tree diagrams of Rule 122 for L = 3, 4, . . . , 8 are exhibited in Table 20. Following a detailed analysis of these diagrams, the qualitative properties of local rule 122 extracted from basin-tree Galleries 122-1 to 122-8 of Table 20 are summarized below:
2.4.7. Highlights from Rule 122
2937
Basin tree diagrams for rule 126 .
126 , L = 3
0
1
7
Gallery 126 - 1
5
4
6
3
2
8 =1 (a) Period-1 Attractor : ρ 1 = −− 8
Basin tree diagrams for Rule 126
Table 21.
2938
0
5
15 3
9
T=2
Transient phase
6
12
10
8 = 0.5 ρ 1 = 16 −−
(a) Period-1 Attractor :
126 , L = 4
σ = +2
τ=1
τ=1
4
1
0
0.5
φn
8
4
0
7
11
0.5
σ =+ −2, τ = 1
13
14
φn - 1
1
β>0
2
1
(b) Bernoulli (σ = +− 2, τ = 1) 4 = 0.5 Period-2 Attractors ρ 2 = 2 16 −−
(Continued )
Gallery 126 - 2
σ = −2
0 1 2 3 4
Table 21.
10
T=2
Transient phase
0
11
13
20
0 1 2 3 4
5
31
26
12 = 0.375 ρ 1 = −− 32
(a) Period-1 Attractor :
126 , L = 5
21
9
12
(Continued )
25
15
23
28 8
16
27
29
30
14
7
19
4
2
1
6
3
17
24
12
4 = 0.625 Period-2 Attractors ρ2 = 5 32 −−
(b) Bernoulli (σ = 0, τ = 2)
Table 21.
Gallery 126 - 3
σ=0
18
22
τ=2
2939
0
0.5
φn
1
0
0.5
σ =+ −3, τ = 1
30
60
24
12
57
48
φn - 1 1
β>0
51
39
15
σ = +3
0 1 2 3 4 5 6 7 σ = −3
21
42
τ=1
τ=1
6
63
(Continued )
0
43
1
2
20
40
62
9
61
23
19
34
55
0 Transient 1 2 phase 3 4 5 6
29
63
38 14
27
52 49
8
37 36 11 13 28
41 54 35
25
50
7
58 16
56 18 26 22 44 45
47
5
4
17
53
10
29
46
59
31
32
52 = 0.8125 (b) Period-1 Attractor : ρ 2 = 64 −−
Table 21.
Gallery 126 - 4
Transient phase
33
3
6
4 = 0.1875 ρ 1 = 3 64 −−
Period-2 Attractors :
(a) Bernoulli (σ = + − 3, τ = 1)
126 , L = 6
T=2
2940
2941
59
(Continued )
Gallery 126 - 5
101
128 ρ1 = 128 −− = 1
(a) Period-1 Attractor :
69 70 68 58 57 107 90 16 20 111 35 56 40 119 28 62 65 98 87 11 38 45 118 124 13 117 53 99 19 9 42 71 3 10 96 21 95 116 46 31 54 76 108 4 113 32 114 14 78 112 27 84 74 17 123 73 127 89 15 121 80 110 81 6 47 77 86 48 120 49 51 41 25 106 22 122 37 102 79 26 5 0 30 63 82 7 100 60 97 18 109 115 50 12 24 2 64 105 125 103 33 23 39 101 67 43 94 72 85 126 0 61 66 104 1 88 44 2 55 52 1 3 36 4 83 5 91 75 6
92 29 8 93 34
126 , L = 7
Table 21.
Transient phase
2942
55
103
87
110
206
174
10
78
5
39
168
200
152
81
145
49
250
143
253
2
245
31
251
4
126 , L = 8
(Continued )
216
7
177
14
112
141
224
27
32
223 137
140
138
114
80
19
25
21
228
160
117
118
115
234
236
230
205
217
213
155
179
171
65
201
42
50
38
130
147
84
100
76
190
227
127
128
125
199
254
1
Gallery 126 - 6
248
175
64
191
241
95
54
193
108
131
28
99
56
198
8
247
62
235
16
239
124
215
70
69
98
35
162
156
20
196
57
40
93
157
220
186
59
185
28 = 0.4375 (a) Bernoulli (σ = + −− − 4, τ = 3) Period-6 Attractors : ρ 1 = 4 256
Table 21.
0
σ = −4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5
σ = +−4, τ = 3
Transient phase
0
0.5
φn
1
1
110
σ = +4
φn - 3
(Continued )
0
0.5
φn
1
0
0.5
φn - 1
1
β>0
238
68
σ = +−2, τ = 1
221
136
T=2
σ = −2
τ=1
τ=1
17
σ = +2
17
187
Transient phase
34
119
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 = 0.03125 ρ 2 = 2 256 −−
(b) Bernoulli (σ = +− 2, τ = 1) Period-2 Attractors :
Table 21.
Gallery 126 - 7
Period-6 Attractors (continued) :
(a) Bernoulli (σ = +− 4, τ = 3)
126 , L = 8
T=6
β>0 τ=3 τ=3
2943
2944
0
113
142
211
122
209
46
44
88
194
36
48
3
66
232
67
233
26
229
192
30
15
96
71
237
63
225
51
153
240
159
246
163
18
12
6
9
22
97
222
161
208
111
176
184
33
243
94
47
249
144
11
92
79
139
116
158
58
197
173
91
182
202
149
43
214
109
101
86
107
53
74
75
150
45
77
154
181
218
178
41 148
89
172
136 ρ3 = 256 −− = 0.53125
Gallery 126 - 8
85
13
244
242
255
188
61
60
102
231 189
24
195
204
(Continued )
(c) Period-1 Attractor :
170
151
104
167
135
252
183
29
120
72
129
126
203
121
207
132
23
219
52
134
123
133
226
126 , L = 8
Table 21.
165
90
166
106
37
82
210
105
180
83
169
212
146
73
164
2945
8
7
6
5
4
3
L attractors
1 1 2 1 5 3 1 1 4 2 1
i
1 1 2 1 2 1 2 1 1 2 3
Eden
Number Period-n Period-n Isles of
1 1 2 1 2 2 1 1 6 2 1
n
0 0 2 0 0 3 0 0 4 2 0
σ1
1 1 1 1 2 1 1 1 3 1 1
τ1
+ + + + + + + + + + +
β1
-4 -2
-3
-2
σ2
3 1
1
1
τ2
+ +
+
+
β2
ρ3 = 0.53125
ρ2 = 0.03125
ρ1 = 0.4375
ρ1 = 1
ρ2 = 0.8125
ρ1 = 0.1875
ρ2 = 0.625
ρ1 = 0.375
ρ2 = 0.5
ρ1 = 0.5
ρ1 = 1
ρ
coefficient
Summary of Qualitative properties of local rule 126 extracted from Gallery 126 for Rule 126 Number ID Number Bernoulli Parameters Robustness Period of of
The basin tree diagrams of Rule 126 for L = 3, 4, . . . , 8 are exhibited in Table 21. Following a detailed analysis of these diagrams, the qualitative properties of local rule 126 extracted from basin-tree Galleries 126-1 to 126-8 of Table 21 are summarized below:
2.4.8. Highlights from Rule 126
2946
Basin tree diagrams for rule 146 .
7
1 = 0.125 ρ 1 = −− 8
(a) Period-1 Isle of Eden :
146 , L = 3
Gallery 146 - 1
6
0
5
1
3
2
4
7 = 0.875 (b) Period-1 Attractor : ρ 2 = −− 8
Basin tree diagrams for Rule 146
Table 22.
2947
10
1
8
4
2
11
13
14
7
1 = 0.0625 ρ2 = −− 16
15
(b) Period-1 Isle of Eden :
0
5
11 = 0.6875 ρ1 = −− 16
(a) Period-1 Attractor :
146 , L = 4
(Continued )
0
0.5
σ =+ −2, τ = 1
6
3
T=2
1
β>0
φn - 1
Gallery 146 - 2
0
0.5
φn
1
9
12
σ = −2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 = 0.25 ρ3 = 2 −− 16
σ = +2
τ=1
τ=1
12
(c) Bernoulli (σ = +− 2, τ = 1) Period-2 Isles of Eden :
Table 22.
2948
21
11
7
26
0
22
13
25
1 = 0.03125 ρ2 = 32 −−
31
(b) Period-1 Isle of Eden :
14
28
11 = 0.34375 ρ1 = −− 32
(a) Period-1 Attractor :
146 , L = 5
16
8
4
2
1
9
20
10
5
18
6
3
17
24
12
15
23
27
29
30
4 = 0.625 Period-2 Attractors ρ3 = 5 32 −−
Gallery 146 - 3
19
(Continued )
(c) Bernoulli (σ = 0, τ = 2)
Table 22.
0
0.5
φn
1
0
0.5
34
5
10
1
β>0
φn - 1
20
40
17
σ =+ −3, τ = 1
8
16
58
29
32
53
43
23
46
σ = +3
0 1 2 3 4 5 6 7 σ = −3
τ=1
τ=1
58
41
25
49
7
28
6
42
12
9
57
51
18
15
0
30
13 11
48
54
45
33
26 22
1 = 0.015625 ρ3 = −− 64
55
14
39
27
60
21
35
(c) Period-1 Isle of Eden :
59
47
62
50
19
45 = 0.703125 ρ 2 = 64 −−
Gallery 146 - 4
Transient phase
1
2
4
(Continued )
(b) Period-1 Attractor :
Table 22.
6 = 0.28125 Period-2 Attractors : ρ 1 = 3 64 −−
(a) Bernoulli (σ = + − 3, τ = 1)
146 , L = 6
T=2
2949
3
61
44
37
24
63
36
56
31
38
52
2950
50
29
91
77
55
114
7
103
79
78
1
44
74
104
2
101
100
25
67
52
24
36
57 109
64
33
97
94
63
86
95
32
6
92 76
11
80
15
3
93
23
62
83
19
46
59
38
124
0 1 2 3 4 5 6 7 8
124
127
1 = 0.0078125 ρ 2 = 128 −−
(b) Period-1 Isle of Eden :
Transient phase
127 ρ 1 = 128 −− = 0.9921875
(a) Period-1 Attractor :
105
56
112
89
16
69
121
41
118
13
47
40
70
84
98 108
87
8
68
111 71
51
9
43
34
20
116
(Continued )
Gallery 146 - 5
39
65
35
28 42
85
82
30 12
26
45
99
119
0
54
73
107
49
75
106
17
10
126 18
60
90
53
115
22
61
120
72
102
37
66
96
81
4
110
31
123 113
117
21
58
122 125
48
5
88
27
14
146 , L = 7
Table 22.
2951
111
6
150
132
75
159
89
135
38
169
9
(Continued )
98
180
48
123
120
72
77
49
240
202
252
105
144
200
185 22
103 26
145
115 44
206 52
196
53
219
129
165
237
192
243
43
33
210
231
86
225
137
106
66
195
28 = 0.4375 ρ 1 = 4 256 −−
Gallery 146 - 6
134 217
133 110
50
13 179
11 220
149 100 154 96
246
249
(a) Bernoulli (σ = + − 4, τ = 3) Period-6 Attractors :
3 212 35 172 183 19 207
230 88
157 104
70
205 176
59 208
15
146 , L = 8
Table 22.
152
45
12
222
30
18
83
76
60
178
63
90
36
161 118
97 155
140
67 236
194 55
101 25 166 24
189
126
0
Transient phase
0
0.5
φn
1
σ = −4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.5
σ =+ −4, τ = 3
1
252
σ = +4
φn - 3
(a) Bernoulli (σ = + − 4, τ = 3) Period-6 Attractors (continued) :
146 , L = 8
T=6
β>0 τ=3 τ=3
2952
(Continued )
0
0.5
σ =+ −2, τ = 1
153
51
φn - 1
1
β>0
T=2
σ = −2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
255
σ = +2
τ=1
τ=1
204
1 = 0.00390625 ρ3 = 256 −−
(c) Period-1 Isle of Eden :
Gallery 146 - 7
0
0.5
φn
1
102
204
2 = 0.015625 ρ 2 = 2 256 −−
(b) Bernoulli (σ = +− 2, τ = 1) Period-2 Isles of Eden :
Table 22.
2953
223
143
190
227
247
250
168
5 37
54
65
244
253
93 8
117
61
85
34
20
95
175
92
94
211
40
68
122
251
232
69
1
254
215
171
142
56
226
174
245
242
58
84
46
47
131
233
4 158 146 130
108
10
74
81
203 139 224
124
186
41
198
238
187
177
16
170
17
160
64
234
241
(Continued )
125
239
199
31
191
156
214
78
181
107
57
0 1 2 3 4 5 6 7 8 9 10
39
218
0
173
114
109 147
182
91
228
201
127
139 ρ4 = 256 −− = 0.54296875
(d) Period-1 Attractor :
Gallery 146 - 8
138 7
0
27
164
141 82
167
21
184 14 163 188
209
80
136
32
216
221
119
99
148
248
112 197 229
2
62
162
116
73 79
128
42
29
121
87
113
28
71
213
193
151
23
235
127
146 , L = 8
Table 22.
Transient phase
2954
8
7
6
5
4
3
L
1 2 1 2 3 1 2 3 1 2 3 1 2 1 2 3 4
i
1
4
1
5 3 1
1
1 1
attractors
2 1
1
1
1
1 2
1
Eden
Number Period-n Period-n Isles of
1 1 1 1 2 1 1 2 2 1 1 1 1 6 2 1 1
n
0 0 0 0 2 0 0 0 3 0 0 0 0 4 2 0 0
σ1
1 1 1 1 1 1 1 2 1 1 1 1 1 3 1 1 1
τ1
+ + + + + + + + + + + + + + + + +
β1
-4 -2
-3
-2
σ2
3 1
1
1
τ2
+ +
+
+
β2
ρ1=0.125 ρ2=0.875 ρ1=0.6875 ρ2=0.0625 ρ3=0.25 ρ1=0.34375 ρ2=0.03125 ρ3=0.625 ρ1=0.28125 ρ2=0.703125 ρ3=0.015625 ρ1=0.992188 875 ρ2=0.0078125 ρ1=0.4375 ρ2=0.015625 ρ3=0.00390625 ρ4=0.542969 6875
ρ
coefficient
Summary of Qualitative properties of local rule 146 extracted from Gallery 146 for Rule 146 Number Period ID Number Bernoulli Parameters Robustness of of
The basin tree diagrams of Rule 146 for L = 3, 4, . . . , 8 are exhibited in Table 22. Following a detailed analysis of these diagrams, the qualitative properties of local rule 146 extracted from basin-tree Galleries 146-1 to 146-8 of Table 22 are summarized below:
2.4.9. Highlights from Rule 146
2955
Basin tree diagrams for rule 150 .
2
150 , L = 3
4
1 7
0
Gallery 150 - 1
4 (a) Period-1 Attractors : ρ 1 = 2 −− 8 =1
6
3 5
Basin tree diagrams for Rule 150
Table 23.
0
0.5
φn
1
0
σ = −1
0 1 2 3 4
0.5
τ=1
τ=1
12
φn - 1
σ = +1
σ =+ − 2, τ = 1
3
1
β>0
12
(Continued )
(c)
13
4
4
14
Gallery 150 - 2
0 1 2 3 4
8
9
Period-2 Isles of Eden : 2 = 0.5 ρ 3 = 4 16 −−
6
2 = 0.25 Period-2 Isles of Eden : ρ 1 = 2 16 −−
(a) Bernoulli (σ = + − 2, τ = 1)
T=2
150 , L = 4
T=2
Table 23.
2
T=2
2956
0 1 2 3 4
7
10
0
1
1
5
15
11
(b) Period-1 Isles of Eden : 4 = 0.25 ρ 2 = 16 −−
2957
20
23
7
26
19
13
3
2
1
0 1 2 3 4
0 1 2 3 4
9
15
14
21
150 , L = 5
T=3
T=3
(Continued )
6
4
8
28
5
29
18
30
11
24
12
16
25
10
27
22
17
1
0
0.5
σ = 0, τ = 3
φn - 3
0
31
2 ρ 2 = −− 32 = 0.0625
(b) Period-1 Isles of Eden :
0
0.5
φn
Gallery 150 - 3
12
4
3 (a) Bernoulli (σ = 0, τ = 3) Period-3 Isles of Eden : ρ 1 = 10 −− 32 = 0.9375
Table 23.
1
β>0
2958
5
51
30
40
20
39
150 , L = 6
34
45
17
54
27
15
0
60
24
63
43
36
9
46
29
53
18
6
3
48
12
58
33
23
Gallery 150 - 4
57
10
(Continued )
Transient phase
Transient phase
16 (a) Period-1 Attractors : ρ 1 = 2 −− 64 = 0.5
Table 23.
0 1 2 3 4 5 6
0 1 2 3 4 5 6
33
30
2959
47
25
2
52
8
59
150 , L = 6
62
13
7
28
49
19
42
32
4
21
55
14
35
50
1
41
56
26
31
44
16
38
61
11
Gallery 150 - 5
37
22
(Continued )
Transient phase
Transient phase
16 = 0.5 (b) Period-1 Attractors : ρ 2 = 2 −− 64
Table 23.
0 1 2 3 4 5 6
0 1 2 3 4 5 6
52
26
45
30
76
94
33
63
115
82
51
18
109
97
12
64
86
15
38
47
89
9
118
112
6
32
43
71
19
87
40
111
124
84
108
68
59
56
Gallery 150 - 6
80
95
121
41
7 = 0.765625 ρ 2 = 14128 −−
3
16
1
0
0.5
φn
0
0
0 1 2 3 4 5 6 7
0.5
σ = 0, τ = 7
φn - 7
1
β>0 12
127
2 = 0.015625 (a) Period-1 Isles of Eden : ρ 1 =128 −−
(Continued )
(b) 14 Bernouli (σ = 0, τ = 7) Period-7 Isles of Eden :
150 , L = 7
Table 23.
T=7
2960
2961
85
99
73
107
20
119
62
42
54
34
93
28 8
65
150 , L = 7
(Continued )
106
113
100
117
27
17
110
14
96
4
53
120
50
122
5
125
79
74 7
77
72
55
Gallery 150 - 7
10
123
31
21
48
2
90
60
25
61
66
126
103
37
102
36
91
67
24
1
(b) 14 Bernoulli (σ = 0, τ = 7) Period-7 Isles of Eden (continued) :
Table 23.
22
98
35
26
49
44
52
81
11
69
70
13
150 , L = 7
(Continued )
88
104
105
58
92
78
39
75
23
116
57
0
0.5
φn
1
0
0.5
φn
1
0
0
0.5
σ = −1, τ = 2
0.5
σ = +1, τ = 2
Gallery 150 - 8
29
83
101
46
114
φn - 2
φn - 2
7 = 0.21875 ρ 3 = 4128 −−
1
1
σ = −1
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
σ = +1
(c) 4 Bernoulli (σ = +1, σ = −1, τ = 2) Period-7 Isles of Eden :
Table 23.
T=7 β>0
T=7 β>0
104
88
τ=2 τ=2
2962
2963
252
207
84
69
123
48 249
246
144
72
159 111
3
9
173
183
132
214
16 168
112
56
138 218
1
7
109
131
150 , L = 8
(Continued )
63
81
21
237
33
222
18
91
224
181
42
192 231
12 126
64 162
4
219
66
189
36
182
193
107
28
129
24
128
8
Gallery 150 - 9
96 243
6
32
2
14
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
4 = 0.75 (a) 48 Period-4 Isles of Eden : ρ 1 = 48 256 −−
Table 23.
T=4
T=4
192
128
2964
167
122
94
229
59
79 118
50
25
208
103
13 244
35
155
179
145
205
19
137
176 188
185
11 203
49
220
152
150 , L = 8
(Continued )
236
100
206
70
55
38
115
47
67
61
52 211
194 242
44
217
200
157
140
110
76
230
196
134
104
133
88
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
Gallery 150 - 10
161 158
26 233
97 121
22 151
98
(a) 48 Period-4 Isles of Eden (continued) :
Table 23.
T=4 T=4
208
176
2965
253
223
232
142
248
241
74
37
117 251
31
87 191
164
154
143
82
77
113 209
86
43
29 169
23
101
212
178
150 , L = 8
(Continued )
58
227
148
62
73
53
172
83
71
213 239
93 254
197
92 116
199
41
124
146
106
89
166
149
171
186
139
184
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
Gallery 150 - 11
234 247
174 127
226 163
46
202
(a) 48 Period-4 Isles of Eden (continued) :
Table 23.
T=4
T=4
223
232
114
240
80
175 95
245
250
39 228
210
105
45
150
15 225
177
160
216
5
27
150 , L = 8 (b)
141
(Continued )
65
190
235
165
90
99
156 147
60 135
20 130
125
215
75
180
198
108
57
0
0.5
φn
1
0
0.5
φn
1
0
0.5
120
40
φn
0
0
0
0.5
σ = +− 4, τ = 2
0.5
σ = +− 4, τ = 2
0.5
σ =+ − 4, τ = 2
Gallery 150 - 12
78 201
30 195
10
54
12 Bernoulli (σ = + − 4, τ = 2) Period-4 4 Isles of Eden ρ 2 = 12 −− 256 = 0.1875 1
Table 23.
φn - 2
φn - 2
φn - 2 1
1
1
0 1 2 3 4 5 6 7 8
σ = +4
0 1 2 3 4 5 6 7 8
σ = +4
0 1 2 3 4 5 6 7 8
σ = +4
T=4 β>0
T=4 β>0
T=4 β>0
σ = −4
σ = −4
σ = −4
160
240
τ=2 τ=2
228
τ=2 τ=2 τ=2 τ=2
2966
2967
0 1 2 3 4
σ = −2
34
136
119
221
σ = +2
17
68
0
0.5
φn
1
0
0.5
σ =+ − 2, τ = 1
σ = −2
φn - 1
σ = +2
τ=1
τ=1
136
1
Gallery 150 - 13
τ=1
τ=1
34
187
238
1 2 3 4
(d) 4 Bernoulli (σ = + −2, τ = 1, β < 0) Period-2 Isles of Eden 2 = 0.03125 ρ 4 = 4 256 −− 0
T=2
T=2
85
170
0
β0
2968
8
7
6
5
4
3
L
1 1 2 3 1 2 1 2 1 2 3 1 2 3 4 5
i
2 2
2
attractors
2 14 4 48 12 4 4 2
2 4 4 10 2
Eden
Number Period-n Period-n Isles of
1 2 1 2 3 1 1 1 1 7 7 4 4 1 2 2
n
0 2 0 2 0 0 0 0 0 0 1 0 4 0 2 2
σ1
1 1 1 1 3 1 1 1 1 7 2 4 2 1 1 1
τ1
+ + + _ + + + + + + + + + + _ +
β1
1 1
2
-4 -2 -2
2
1
1
τ2
-1
-2
-2
σ2
+ _ +
+
+ _
β2
ρ1 = ρ1 = ρ2 = ρ3 = ρ1 = ρ2 = ρ1 = ρ2 = ρ1 = ρ2 = ρ3 = ρ1 = ρ2 = ρ3 = ρ4 = ρ5 =
1 0.25 0.25 0.5 0.9375 0.0625 0.5 0.5 0.015625 0.765625 0.21875 0.75 0.1875 0.015625 0.03125 0.015625
ρ
coefficient
Summary of Qualitative properties of local rule 150 extracted from Gallery 150 for Rule 150 Number Bernoulli Parameters Robustness ID Number Period of of
The basin tree diagrams of Rule 150 for L = 3, 4, . . . , 8 are exhibited in Table 23. Following a detailed analysis of these diagrams, the qualitative properties of local rule 150 extracted from basin-tree Galleries 150-1 to 150-13 of Table 23 are summarized below:
2.4.10. Highlights from Rule 150
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden
Fig. 2.
Truth table, Boolean cube, Difference Equation, and space-time pattern of local rule 90 .
∆
Table 24. Table defining8 xi ⊕ xj = xi XOR xj .
3. Global Analysis of Local Rule 90 The truth table, Boolean cube, and “Difference Equation” defining the local rule 90 along with a space-time pattern (with a single red-pixel initial state) exhibited in Table 5 of [Chua et al., 2003] is reproduced in Fig. 2 for the reader’s convenience. For this paper, it is more instructive to recast the Difference Equation defining 90 into an equivalent difference equation involving only a mod 2 addition ⊕ (defined in Table 24). Substituting ui = 2xi − 1 from Eq. (4) of [Chua et al., 2005a] for ui in the Difference Equation for 90 , we obtain − 1 = sgn[1 − |2xti−1 + 2xti+1 − 2|] 2xt+1 i = sgn[1 − 2|xti−1 + xti+1 − 1|] 8
2969
(18)
0 1
0 0 1
1 1 0
Simplifying Eq. (18) using Table 24, we obtain the following equivalent Difference Equation: Rule 90
xt+1 = (xti−1 + xti+1 ) mod (2) i = xti−1 ⊕ xti+1
(19)
The mod 2 operation xi ⊕ xj between two binary variables is also called an exclusive OR operation in mathematical logic, and ∆
denoted by xi ⊕ xj = xi XOR xj .
2970
L. O. Chua et al.
3.1. Ru1e 90 has no Isle of Eden A cursory glimpse at the basin-tree diagram of rule 90 in Table 18 reveals that all bit strings converge to an attractor for 3 ≤ L ≤ 8. We now prove this property is true for all L. Theorem 1. Rule 90 does not have any isle of
Eden. It follows from Eq. (19) that an arbitrary bit string
Proof.
t
x =
(xt0
xt1
xt2
···
xtL−1 )
(20)
at time “t” is linearly related (mod 2) to its image xt+1 = (x0t+1
xt+1 1
xt+1 2
···
t+1 xL−1 )
(21)
at time “t + 1”via an L × L circulant matrix [Davis, 1979] M 90 , henceforth called the local time-1 state transition matrix: · · · t+1 xt x0 0 · · · t t+1 x1 x1 t+1 ··· xt x 2 2 ··· t t+1 x3 x3 = .. .. .. .. . .. . . . . ··· xt t+1 L−2 xL−2 t ··· xL−1 xt+1 L−1 ··· xt xt+1 M 90 (22) + where addition is mod (2) sum . Note the diagonal elements of the circulant matrix M 90 are all equal to zero. Observe also the elements below (resp. above) the diag directly onal of M 90 are all equal to one. All other elements are zero, except for the top rightmost element, and the bottom leftmost elements, which are equal to one, respectively. It follows from this spe- cial structure that the leftmost column of M 90 is equal to the mod 2 sum of the L-1 remaining columns. Since the columns of M 90 are not linearly independent, mod 2, it follows that M does not have an inverse. Since the bit string xt+1 on the left side of Eq. (19) does not have a unique preimage, it 9
follows that the bit string xt is not an isle of Eden of 90 . Since xt is an arbitrary bit string, it follows that 90 cannot possess an isle of Eden for any L.
3.2. Period of Rule 90 grows with L Since rule 90 does not have isles of Eden, all bit strings of 90 must converge to period-T attractors whose period “T ” is bounded by 1 ≤ T ≤ Tmax
(23)
where Tmax = 2L as defined in Eq. (6). As an example, the period T of an attractor of 90 is listed in Table 25 for 3 ≤ L ≤ 100. Observe that the period T for some L (e.g. L = 47, 49, 53, etc.) is not listed in Table 25 because it is so large that it had exceeded the maximum simulation time allocated. A bit string belonging to one of the many period-T attractors for 3 ≤ L ≤ 25 is given in Table 26. For example, the bit string listed for L = 3 corresponds to the third period-1 attractor (out of 4) listed in Gallery 90-1 of Table 18. The bit string listed for L = 5 corresponds to node 6mof Gallery 90-3 of Table 18, out of five period-3 attractors. The bit string listed for L = 6 corresponds to node 30min the fifth attractor shown on the left of Gallery 90-5. The bit string listed for L = 7 corresponds to node 68min the top left attractor of 90 shown on the top left of Gallery 90-7. As examination of Table 25 shows that unlike the period-1 and period-2 local rules listed in Tables 7 and 8, and the period-3 local role 62 , which have a relatively small period, and independent of L, the period T of rule 90 can increase at an exponential rate as a function of L, as depicted in Fig. 3. Such exponential growth of T as a function of L is a signature of all complex Bernoulli rules in Table 11, and hyper-Bernoulli rules in Table 12. In spite of the very large values T of some period-T attractors of 90 , these periods are usually many orders of magnitude smaller than the upper bound Tmax listed in Table 27 for 3 ≤ L ≤ 85.9 There exists, however, period T attractors whose period T approaches the upper bound Tmax . For example, Table 28 shows a period-504 bit string of an isle of Eden of rule 45 for L = 9, which is almost as large as Tmax = 29 = 512! This example suggests that some of the empty slots in Tables 25 may never be filled.10
It would take at least 105, 104, 783, 572 years for a 1 GHz PC to simulate all Tmax = 2L distinct bit strings! Rule 45 will be studied in Part VIII where it is proved that all bit strings are isles of Eden if, and only if L is an odd number.
10
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 25.
L
Attractor
L
Period “T ” of attractors of local rule 90 for 3 ≤ L ≤ 100.
Attractor
L
Attractor
Attractor
L
21
T = 63
41
T = 1023
61
2
22
T = 62
42
T = 126
62
T = 62
82
Attractor
81 T = 2046
3
T=1
23
T = 2047
43
T = 127
63
T = 63
83
4
T=1
24
T=8
44
T = 124
64
T=1
84
T = 252
5
T=3
25
T = 1023
45
T = 4095
65
T = 63
85
T = 255
6
T=2
26
T = 126
46
T = 4094
66
T = 62
86
T = 254
7
T=7
27
T = 511
47
8
T=1
28
T = 28
48
9
T=7
29
T = 16383
49
10
T=6
30
T = 30
50
T = 2046
70
11
T = 31
31
T = 31
51
T = 255
71
12
T=4
32
T=1
52
T = 252
72
13
T = 63
33
T = 31
53
14
T = 14
34
T = 30
54
15
T = 15
35
T = 4095
55
16
T=1
36
T = 28
56
T = 56
76
17
T = 15
37
T = 87381
57
T = 511
77
18
T = 14
38
T = 1022
58
T = 32766
78
19
T = 511
39
T = 4095
59
20
T = 12
40
T = 24
60
67 T = 16
68
87 T = 60
88
T = 248
89
T = 2047
90
T = 8190
91
T = 4095
T = 56
92
T = 8188
73
T = 511
93
T = 1023
74
T = 174762
94
69
T = 1022
T = 8190
75
95 T = 2044
T = 60
The state transition formula given in Fig. 2 and Eq. (19) for rule 90 is local in time in the sense that it generates from a bit string xt = (xt0 xt1 xt2 · · · xtL−1 ) at time “t” the next bit string xt+1 xt+1 · · · xt+1 xt+1 = (xt+1 0 1 2 L−1 ) at time “t + 1”. Our next theorem gives an explicit formula which is global in time in the sense that it generates a bit string xn0 = (xn0 xn1 xn2 · · · xnL−1 ) at any future time n > t. Theorem 2. Global State-Transition Formula for
80
∆
T = 32
97 T = 8190
98 99
T = 48
T = 32767
100 T = 4092
Each pixel xni at time n > t is determined from “n + 1” initial pixels x0i−n , x0i−n+2 , . . . , x0i+n−2 , x0i+n at t = 0 via the binomial formula. xni =
n k=0
Proof.
n! • x0i−n+2k k!(n − k)!
mod (2)
(24)
Apply mathematical induction as follow:
(a) n = 1 Applying n = 1 in Eq. (24), we obtain11 x1i = x0i−1 + x0i+1 which is Eq. (19) for t = 0.
Recall the factorial notation 0! = 1.
96
79
3.3. Global state-transition formula for rule 90
11
L
1
90 .
2971
mod (2)
(25)
2972
L. O. Chua et al. Table 26.
L T
Bit strings for generating a period-T attractor of Rule 90 .
A bit string on a Period-T attractor
3 1 4 1 5 3 6 2 7 7 8 1 9 7 10 6 11 31 12 4 13 63 14 14 15 15 16 1 17 15 18 14 19 511 20 12 21 63 22 62 23 2047 24 8 25 1023
10
6
Legend :
T 10
10
10
10
- attractor period-T - attractors with T > 10 6
5
4
3
2
10
1 1 Fig. 3.
10
L=I+1
10
2
Dependence of the period “T ” of attractor of rule 90 as a function of L (in logarithmic scale).
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 27. The upper bound Tmax of the period “T ” as function of L for 3 ≤ L ≤ 85.
Tmax = 2 L
L 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
85
38685626227668133590597632
. . .
k=0
+
k=0
m! • x0i−m+2k k!(m − k)!
k=0
mod (2)
(26)
m! x0 k!(m − k)! (i+1)−m+2k
mod (2)
Changing symbol “m” on the right-hand side of Eq. (27) to m − 1 gives
k=0
(m − 1)! x0 k!(m − 1 − k)! i−m +2k +
−1 m
k=0
(m − 1)! x0 k!(m − 1 − k)! i−m +2k+2
The terms inside the bracket can be simplified by observing for k = 1 to m − 1, we have (m − 1)! (m − 1)! + k!(m − 1 − k)! (k − 1)!(m − k)! 1 1 (m − 1)! + = (k − 1)!(m − 1 − k)! k (m − k) (m − k) + k (m − 1)! = (k − 1)!(m − 1 − k)! k(m − k) =
m ! k!(m − k)!
(31)
Moreover, when k = 0 and k = m , Eq. (31) gives the same value as the first term on the left of Eq. (30), and the last term on the right of Eq. (30), respectively. Substituting back m = m −1 in Eq. (31), and making use of Eqs. (27)–(31), we obtain m+1 (m + 1)! • x0i−(m+1)+2k = xm+1 i k!(m + 1 − k)! mod (2) (32)
(27)
−1 m
(30)
k=0
k=0
k=0
k=1
• x0i−m +2k
m = xm xm+1 i−1 + xi+1 mod (2) i m m! x0 = k!(m − k)! (i−1)−m+2k
+
(m − 1)! x0 (29) (k − 1)!(m − k )! i−m +2k
Changing the dummy index k in Eq. (29) back to k, we obtain m −1 m (m − 1)! (m − 1)! + k!(m − 1 − k)! (k − 1)!(m − k)!
We must show that incrementing “m” to “m + 1” in Eq. (26) gives Eq. (24) with n = m + 1. Substituting Eq. (26) to Eq. (19), we obtain
m
m k =1
. . .
m
(m − 1)! x0 k!(m − 1 − k)! i−m +2k
(b) Assume Eq. (24) is true for n = m (induction hypothesis); namely, xm i =
Changing symbol k in the second summation terms in Eq. (28) to k − 1 gives −1 m
3 4 5 6 7 8 9 10 11 12 13 14 15 16
2973
mod (2) (28)
which is identical to incrementing m in the induction hypothesis (26) to m + 1. Table 29 gives the global state-transition formula (24) of rule 90 for n = 1, 2, 3, 4 and 5. n Observe that the coefficients k for each time n ≥ 1 is identical to the binomial coefficients in the expansion of (x + y)n , as listed in Table 30 for n = 1, 2, . . . , 11. These binomial coefficients are repackaged in Table 31 into the form of a Pascal’s triangle where each coefficient under the pyramid is obtained by adding adjacent left and right coefficients above it.
2974
0
0.5
φn
1
0
0.5
σ = −2, τ = 56
φ n - 56
β>0 1
504 ρ1 = 512 −− = 0.984375
Isle of Eden:
Period-504
(σ = −2, τ = 56)
(a) Bernoulli
45 , L = 9
Table 28.
508
2
499
8
463
32
319
128
254
1
505
4
487
16
415
64
127
256
340
506
338
491
330
431
298
191
170
253
169
501
165
471
149
351
85
382
70
263
280
30
98
120
392
480
35
387
140
15
49
60
196
240
273
449
123
116
492
464
435
323
207
270
317
58
246
232
473
417
359
429
333
183
310
221
218
373
361
470
422
347
155
366
109
442
436
52
203
208
301
321
182
262
217
26
357
104
406
416
91
131
364
13
235
414
135
434
211
29
391
398
31
59
124
236
496
433
451
199
271
285
62
118
248
472
481
355
229
297
405
166
87
153
348
101
370
404
458
83
299
332
174
306
185
202
164
57
145
228
69
401
276
71
82
284
328
114
290
456
156
39
293
493
150
439
294
27
154
108
105
89
113
133
432
420
195
147
269
77
54
194
345
265
358
38
410
152
107
97
428
304
371
241
462
453
315
279
238
94
441
376
476
352
23
386
92
11
368
44
450
22
225
88
111
55
444
220
243
369
461
454
311
283
411
215
177
349
197
374
277
474
86
237
43
437
325
485
278
407
90
95
360
380
180
190
209
100
7
400
28
67
112
268
448
50
259
134
224
25
412
272
342
509
3
250
115
375
460
478
307
477
66
80
264
320
34
379
20
346
287
362
126
426
258
206
494
233
99
93
204
372
305
466
198
331
281
151
72
81
65
137
260
37
18
144
316
484
167
403
157
79
117
121
158
234
288
468
242
339
457
334
295
314
425
130
324
162
302
102
186
274
9
74
36
296
148
421
396
408
51
313
443
230
239
409
445
103
247
455
503
490
479
427
383
504
136
10
33
40
132
160
17
129
68
5
378
12
163
48
141
192
175
171
510
257
53
483
173
399
181
63
213
252
341
497
189
507
245
495
469
447
343
255
350
212
6
337
24
326
96
282
384
106
424
489
61
423
244
159
465
125
327
500
286
467
122
335
488
318
419
143
200
14
289
56
385
418
498
139
459
45
303
249
363
344
430
354
187
394
172
222
110
377
440
486
227
397
176
267
193
46
261
184
389
231
482
413
395
119
47
188
388
179
19
205
76
309
214
308
216
210
353
329
390
223
356
381
402
502
75
475
300
367
178
446
201
251
21
452
84
275
336
78
322
312
266
226
42
393
168
161
138
291
41
142
The period of the following isle of Eden for rule 45 is T = 504, which is equal almost to Tmax = 512.
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 29.
Table 30.
n
2975
Global state-transition formula for rule 90 for 1 ≤ n ≤ 5.
` ´∆ Table of n k = n!/k! (n − k)!, n = 1, 2, . . . , 11, k = 0, 1, 2, . . . , 11.
k 0
1
2
3
4
5
6
7
8
9
10
1
1
1
2
1
2
1
3
1
3
3
1
4
1
4
6
4
1
5
1
5
10
10
5
1
6
1
6
15
20
15
6
1
7
1
7
21
35
35
21
7
1
8
1
8
28
56
70
56
28
8
1
9
1
9
36
84
126
126
84
36
9
1
10
1
10
45
120
210
252
210
120
45
10
1
11
1
11
55
165
330
462
462
330
165
55
11
11
1
2976
L. O. Chua et al.
Table 31. Binomial coefficients cal’s triangle.
`n´ k
repackaged into a Pas-
Pascal’s Triangle 1 1 1 1 1
1 2
3
1 3
1
6 4 1 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1
4
5
.. .
Taking the “mod 2 equivalent” of each coefficient in Table 29, we obtain the more compact but equivalent expansion in Table 32 where all nonzero terms correspond to those in Table 29 with “odd number ” coefficients. The equivalent mod 2 coefficients are repackaged in Table 33. Observe that Table 33 can be obtained from Table 31 by replacing each odd (respectively, even) coefficient in Table 31 by a one (respectively, a zero). If we fill in the missing slot in each row of the mod 2 Pascal’s triangle, we would obtain the pyramidal “fractal” space-time pattern of rule 90 in Table 34, which is identical
Table 32.
to that shown in the bottom of Fig. 2, where the initial configuration consists of a single red bit at the center, as in [Wolfram, 2002]. Example 1. Table 35 shows the space-time pattern obtained from the global state-transition formula of rule 90 in (a) when the initial configuration consists of a single red bit at the center. The corresponding pattern obtained from the local statetransition formula is shown in (b). They are identical, as expected. The minor differences in the graphics and color are due to the differences in the softwares used to generate these patterns. Example 2. Table 36 shows the corresponding results when the initial configuration consists of a string of random bits.
3.4. Periodicity constraints of Rule 90 Theorem 1 implies that all bit strings of rule 90 must converge to a period-T attractor, where T ≤ Tmax ≤ 2L . We will prove in this subsection that ∆ for finite length L = I + 1, the period T must satisfy certain constraints. Such periodicity constraints are useful on many occasions, such as verifying whether certain periodic orbit can exist, or to generate new periodic orbits, etc. The proof of many of these results depend on the following easily
Compact global state-transition formula for rule 90 for 1 ≤ n ≤ 5.
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden Table 33. Mod 2 binomial coefficients a mod 2 Pascal’s triangle.
`n´ k
repackaged into
Mod 2 Pascal’s Triangle
(iii)
where
1 1 1 1 1 1
1 0
1 0
1 1
0
1 0
1
1
0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 .. .
(ii)
0 mod (2), = 1 mod (2),
Table 34.
0 mod (2), 1 mod (2),
for k = 2, 3, . . . , n − 1 for k = 0, 1, n, n + 1 (35)
n ∆ n! = k!(n − k)! k
(36)
Theorem 3. Periodicity Condition: L = 2m . For L = 2m , m = 2, 3, 4, . . . , rule 90 has a global period-1 attractor Γ; namely, x(Γ) = (0
0 0 ··· L=2m
0)
(37)
Let n = 2m−1 in the global state-transition formula (24). It follows from Eqs. (33) and (36) that Proof.
Binomial Coefficient Lemma. If n = 2m , where m ≥ 2, then the following identities hold: 1 = 1 mod (2), for k = 0, 1, 2, . . . , n − 1 (i) n − k
n k
=
All bit strings not belonging to the attractor Γ converge to Γ in at most 2m−1 iterations.
verifiable identities:
n+1 k
2977
(33) for k = 1, 2, . . . , n − 1 for k = 0, n (34)
n! mod (2) k!(n − k)! 0, for k = 1, 2, . . . , n − 1 = 1, for k = 0, n = 2m−1
(38)
It follows from Eq. (38) and the global statetransition formula (24) that xni contains only two nonzero terms; namely, the leftmost and the
Space-time pattern of the Pascal triangle fractal generated by rule 90 .
2978
L. O. Chua et al. Table 35. Space-time pattern of the rule 90 with red central bit initial configuration: (a) from global state-transition formula; (b) from local state-transition formula.
90 mod(2)
90
x in + 1 = xin- 1 + x in+ 1 mod(2)
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden
2979
Table 36. Space-time pattern of the rule 90 obtained from random initial state generated by: (a) global state-transition formula; (b) local state-transition formula.
90
mod(2)
90
x in + 1 = xin- 1 + x in+ 1 mod(2)
Corollary to Theorem 2. A bit string
rightmost terms. Hence, xni = x0i−n + x0i+n
mod (2)
where n = 2m−1 . Substituting i = n = 2m−1 in Eq. (39), we obtain xni = x0n−n + x0n+n
mod (2)
= x00 + x02m
mod (2)
= x00 + x0L = 2x0 =0
x01
x02
···
x0L−1 )
(41)
of length L = I + 1 (under periodic boundary condition) is a period-n attractor of local rule 90 if, and only if, the periodicity condition xnimod(L) = x0i
mod (2)
= x00 + x02n
x0 = (x00
(39)
=
n k=0
n! k!(n − k)!
• x0((i−n+2k) mod(L))
mod (2)
(42) mod (2)
mod (2) (40)
because x00 = xL . Since x0i is arbitrary, it follows that all bit strings must converge to Eq. (7) in at most 2m−1 iterations.
is satisfied for all i. Follows directly from Theorem 2 and the periodic boundary condition.
Proof.
The periodicity constraint equation (42) is applicable to any period-n attractor of rule 90 .
2980
L. O. Chua et al.
The “mod (L)” operation attached to the subscript index of x0 is just a mathematically precise algorithm for implementing the periodic boundary conditions. It is also mathematically equivalent to concatenating replicas of the L-bit string x0 x1 x2 · · · xI ad infinitum; namely, · · · x0
x1
x2 · · ·
xI
L bits
x0
x0
x2 · · ·
x1
L bits
x1
x2 · · ·
L bits
xI
xI · · ·
(44)
all binomial coefficients in Eq. (42) are equal to unity, in view of the Binomial Coefficient Lemma; namely, k = 0, 1, 2, . . . , n
(45)
Equation (45) is obtained by substituting n + 1 = 2m from Eq. (44) in place of n in Eq. (33): (n + 1) − 1 = 1 mod (2), k = 0, 1, 2, . . . , n k (46) Substituting Eq. (46) into Eq. (42), we obtain the following simplified periodicity constraint: xnimod(L) = x0i =
k=0
x0((i−n+2k) mod(L))
mod (2)
(47) If we impose the additional constraint L = n = then we obtain the following simple method for finding period-(2m − 1) attractors:
2m − 1,
Theorem 4. Periodicity Condition: L = 2m − 1. Rule 90 has a period-n attractor where n = 2m − 1 and L = 2m − 1 if, and only if, L−1 i=0
x0i mod (2) = 0
(49)
Since “i” is an arbitrary index in Eq. (49), let it be “n”. Substituting i = n in Eq. (49), we obtain x00 = x00 + x02 + · · · +
x0 n−1
+x0((n+1) mod(L))
+ · · · + x0((2n−2) mod(L)) + x0((2n) mod(L))
(48)
2m
(50)
− 1, we have
(2n) mod (L) = 0, ((2n − 2) mod (L)) = L − 2, ((n + 1) mod (L)) = 1. Observe also that L = 2m − 1 implies that L − 2, L − 4, etc. are odd numbers. Substituting these mod (L) equivalent indices into Eq. (50), we obtain x00 = x00 + x02 + · · · + x0L−1 + x01 + x03 + · · · + x0L−2 + x00 mod (2)
(51)
Observe that whereas the first x00 on the right-hand side of Eq. (51) comes from the corresponding first term of Eq. (50), the last x00 of Eq. (51) comes from the last bit x0((2n) mod(L)) = x00 of Eq. (50). Rearranging the terms in increasing subscript order in Eq. (51), we obtain x00 = x00 + x00 + x01 + x02 + · · · + x0L−2 + x0L−1 mod (2) (x00
for all i
Valid for n = 2m − 1 L = 2m − 1
(i−n) mod(L) (i−n+2) mod(L) 0 + · · · + x((i+n−2) mod(L)) + x0((i+n) mod(L)) mod (2)
Observe next that for n = L =
n = 2m − 1
m −1 2
x0i mod(L)
mod (2)
where L = I + 1. In the special case where
Valid if n = 2m − 1
Let us list all terms from Eq. (47) as follows: + x0 = x0
n−1=2m −2 0, we can
generalize our definition of “Bernoulli στ -shift” to include σ = 0 for all such period-T orbits. In this case, the return map φn−τ → φn will consist of points lying on the diagonal line φn = φn−τ . We usually include such a graph whenever space permits. We note also that the period “T ” of rules 90 , 150 and 105 exhibit a scale free property as L → ∞. For example, for L = 2m , the period of · · · 0 as rule 90 is always equal T = 1 with 0 0 L bits
its global fixed point attractor. To its immediate left (L = 2m − 1) and immediate right (L = 2m + 1), the period-T orbits have equal period T = 2m −1, at any scale L → ∞. To illustrate the scale-free distribution of the period “T ” of rule 90 , Fig. 6 shows a plot of log T as a function of log L of the data listed in Table 25. Observe the six period-1 red stars on the horizontal axis (T = 1) are located at L = 2m , m = 2, 3, 4, 5; namely, L = 4, 8, 16, 32, 64, as predicted by Theorem 3. Observe that all data points from Table 25 lie along straight lines with a slope equal to “one”. The distributions of the period T of rules 150 and 105 are plotted in Figs. 7 and 8, respectively, as a function of the string length L = I + 1, in base-10 logarithmic scales. The data are extracted from Table 37 for rule 150 , and from Table 38 for rule 105 , respectively. Data points corresponding to isles of Eden are shown as blue dots. Those
3010
L. O. Chua et al.
10
6
T 10
slope =
5
= 10
10
10
4
∆ log(T) ∆ log(L)
log(8) - log(2) =1 log(24)-log(6)
3
2
10 ∆ log(T) ∆ log(L)
1 1 Fig. 6. scales.
10
L=I+1
10
2
Relationship between the period T and the length L = I + 1 of attractors of rule 90 plotted in base-10 logarithmic
Fig. 7. Relationship between the period T and the length L = I + 1 of isles of Eden (plotted as blue dots), and attractors (plotted as red stars) of rule 150 .
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII: Isles of Eden
3011
Fig. 8. Relationship between the period T and the length L = I + 1 of isles of Eden (plotted as blue dots), and attractors (plotted as red stars) of rule 105 .
corresponding to attractors are shown as red stars. Again, the scale-free distributions are clearly seen from the parallel straight lines where these data points are located.
References Adamatzky, A. [2007] “Book review on a nonlinear dynamics perspective of Wolfram’s new kind of science,” J. Cellular Automata, in press. Chua, L. O. & Roska, T. [2002] Cellular Neural Networks and Visual Computing (Cambridge University Press, Cambridge). Chua, L. O., Yoon, S. & Dogaru, R. [2002] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part I: Threshold of complexity,” Int. J. Bifurcation and Chaos 12, 2655–2766. Chua, L. O., Sbitnev, V. I. & Yoon, S. [2003] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part II: Universal neuron,” Int. J. Bifurcation and Chaos 13, 2377–2491. Chua, L. O., Sbitnev, V. I. & Yoon, S. [2004] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part III: Predicting the unpredictable,” Int. J. Bifurcation and Chaos 14, 3689–3820. Chua, L. O., Sbitnev, V. I. & Yoon, S. [2005a] “A nonlinear dynamics perspective of Wolfram’s new kind of
science. Part IV: From Bernoulli shift to 1/f spectrum,” Int. J. Bifurcation and Chaos 15, 1045–1183. Chua, L. O., Sbitnev, V. I. & Yoon, S. [2005b] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part V: Fractals everywhere,” Int. J. Bifurcation and Chaos 15, 3701–3849. Chua, L. O. [2006] A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Vol. I (World Scientific, Singapore). Chua, L. O., Sbitnev, V. I. & Yoon, S. [2006] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part VI: From time-reversible attractors to the arrow of time,” Int. J. Bifurcation and Chaos 16, 1097–1373. Chua, L. O. [2007] A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Vol. II (World Scientific, Singapore). Chang, J. & Muthuswamy, B. [2007] “Extracting optimal CNN templates for linearly-separable onedimensional cellular automata,” Int. J. Bifurcation and Chaos 17, 749–779. Davis, P. J. [1979] Circulant Matrices (WileyInterscience, NY). Garay, B. M. & Hofbauer, J. [2003] “Robust permanence for ecological differential equations, minimax, and discretizations,” SIAM J. Math. Anal. 34, 1007–1039.
L. O. Chua et al.
3012
Walker, C. [1971] “Behavior of a class of complex systems: The effect of system size on properties of terminal cycles,” J. Cybern. 1, 55–67. Walker, C. C. & Aadryan, A. A. [1971] “Amount of computation preceding externally detectable steady state behavior in a class of complex systems,” J. Bio-Med. Comput. 2, 85–94. Wolfram, S. [2002] A New Kind of Science (Wolfram Media, Inc., Champaign, IL). Wuensche, A. & Lesser, M. [1992] The Global Dynamics of Cellular Automata (Addison-Wesley Publishing Company, Reading, MA).
Appendix
The bit strings {xn0 , xn1 , xn2 , . . . , xnI } and {y0n , y1n , y2n , . . . , yIn } generated respectively by rules 150 and 105 from the same initial state {z00 , z10 , z20 , . . . , zI0 } obey the following alternating symmetry relations: (−1)n xni
(A.1)
xni = αn + (−1)n yin
(A.2)
= αn +
(a) Assume n is even in Eq. (A.5). In this case αn = 0 and αn+1 = 1. Equation (A.5) reduces to: = 1 − (xni−1 + xni + xni+1 ) mod (2) 1 − xn+1 i (A.6) Hence, = (xni−1 + xni + xni+1 ) mod (2) xn+1 i
Following the same procedure let us change the symbol “x” in Eq. (A.3) into “y” by applying Eq. (A.2) to obtain
Proof.
= xni−1 + xni + xni+1 xn+1 i
mod (2)
(A.3)
Bit string {y0n , y1n , y2n , . . . , yIn } evolves under rule 105 via the formula n n + yin + yi+1 ) mod (2) yin+1 = 1 − (yi−1
(A.4)
Changing the symbol “y” in Eq. (A.4) into “x” by applying Eq. (A.1) and invoking the identity (3αn ) mod (2) = αn mod (2) we obtain αn+1 + (−1)n+1 xn+1 i = 1 − (3αn + (−1)n xni−1 + (−1)n xni + (−1)n xni+1 ) mod (2) = (1 − αn ) − (−1)n (xni−1 + xni + xni+1 )
(A.8)
Hence, both Eqs. (A.7) and (A.8) are identical to Eq. (A.3).
αn+1 + (−1)n+1 yin+1 n = (3αn + (−1)n yi−1 + (−1)n yin n + (−1)n yi+1 ) mod (2) n n n ) = αn + (−1) (yi−1 + yin + yi+1
Bit string {xn0 , xn1 , xn2 , . . . , xnI } evolves under rule 150 via the formula
(A.7)
(b) Assume n is odd in Eq. (A.5). In this case αn = 1 and αn+1 = 0. Equation (A.5) reduces to: = (xni−1 + xni + xni+1 ) mod (2) xn+1 i
105 150 Alternating Symmetry Duality
yin
Consider the following two cases:
mod (2) (A.9)
Again, we must consider two cases: (a) Assume n is even in Eq. (A.9). In this case αn = 0 and αn+1 = 1. Equation (A.9) reduces to: n n + yin + yi+1 ) mod (2) 1 − yin+1 = (yi−1 (A.10)
Hence, n n + yin + yi+1 ) mod (2) yin+1 = 1 − (yi−1 (A.11)
(b) Assume n is odd in Eq. (A.9). In this case αn = 1 and αn+1 = 0. Equation (A.9) reduces to: n n + yin + yi+1 ) mod (2) 0 + yin+1 = 1 − (yi−1 (A.12)
mod (2) (A.5)
Hence, both Eqs. (A.11) and (A.12) are identical to Eq. (A.4).