Kinetic Energy of Rotation KEi = ½mivi2 = ½ mi(riω)2 = ½ miri2ω2 KEtotal = Σ½ miri2ω2 = ½ (Σ miri2) ω2
Moment of inertia :
I = Σ miri2
mi o
ri
Moment of inertia = rotational mass m depends only on the quantity of matter in an object I depends on both the quantity of matter and its distribution in the rigid body
KErotational = ½ I ω2 KEtranslational = ½ mv2
Moment of Inertia Example 1: mass of the connecting rod is neglected. (very light rod) m1= 1 kg
L = 0.50 m
m2= 2 kg
L = 0.50 m
I = Σ miri2 = m1L2 + m2L2 I = (1 kg)(0.50 m)2 + (2 kg)(0.50 m)2 = 0.75 kgm2 Example 2 :(example 8.8) Example 3: (example 8.9)
1
Moments of Inertia for various Rigid Objects of Uniform Composition Composition
Relationship between Torque and Angular Acceleration Newton’s Second Law: ΣF = Fnet = ma Fnet = ma = mrα Fnet r = mr2α
Στ = τnet = I α Newton’ Newton’s second Law for rotation Problem 36 Examples 8.12, Problem 39
2
Angular Momentum Στ = I α
Στ = I
ωf − ωi Iωf − Iωi = ∆t ∆t
Angular momentum: L = I ω Units: kgm2rad/s Linear momentum: p = m v
Angular Momentum Στ =
Iωf − Iωi ∆L = ∆t ∆t F=
∆p ∆t
If Στ = 0, ∆L = 0 ∆L = Li - Lf = 0 angular momentum is conserved