Learning Markov Models for Stationary System Behaviors Yingke Chen Hua Mao Manfred Jaeger Thomas D. Nielsen Kim G. Larsen Brian Nielsen Department of Computer Science, Aalborg University, Denmark
NFM 2012 April 4, 2012
Motivation Learning Markov Models for Stationary System Behaviors
Introduction 2
Motivation Overview Related Work
I I
Constructing formal models manually can be time consuming Formal system models may not exist I I I
I
Preliminaries LMC PSA & PST SPLTL
legacy software 3rd party components black-box embedded system component
PSA Learning Construct PST PST to PSA and PSA to LMC
Our proposal: learn models from observed system behaviors
Parameter Tunning
Experiment PSA-equivalent Non PSA-equivalent
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark
Overview of Our Approach Learning Markov Models for Stationary System Behaviors
System
Data Introduction Motivation
observe
3
Probabilistic Automata
Overview Related Work
Idle, idle, coffe_request, idle, idle, cup, idle, idle, coffee, coffee, idle, idle, ...
Preliminaries LMC PSA & PST SPLTL
learn
PSA Learning Construct PST PST to PSA and PSA to LMC Parameter Tunning
Experiment PSA-equivalent Non PSA-equivalent
Specification
Conclusion
Model Checker
yes/no
27
Dept. of Computer Science, Aalborg University, Denmark
Related Work Learning Markov Models for Stationary System Behaviors
Related Work I
Learning probabilistic finite automata I I
I
Alergia— R. Carrasco and J. Oncina (1994) Probabilistic Suffix Autumata — D. Ron et al. (1996)
Introduction Motivation Overview 4
I I
Related Work
Preliminaries
Learning models for model checking
LMC
Learning CTMCs — K. Sen and et al. (2004) Learning DLMCs — H. Mao and et al. (2011)
PSA & PST SPLTL
PSA Learning Construct PST PST to PSA and PSA to LMC
Limitation I
Hard to restart the system any number of times.
I
Can not reset the system to a well-defined unique initial state.
Parameter Tunning
Experiment PSA-equivalent Non PSA-equivalent
Conclusion
Proposal I
Learn a model from a single observation sequence 27
Dept. of Computer Science, Aalborg University, Denmark
Labeled Markov Chain (LMC) Learning Markov Models for Stationary System Behaviors
Introduction Motivation Overview
A LMC is a tuple, M = hQ, Σ, π, τ, Li,
Related Work
Preliminaries
I
Q: a finite set of states
I
Σ: finite alphabet
5
LMC PSA & PST SPLTL
PSA Learning
I
π : Q → [0, 1] is an initial probability distribution
I
τ : Q × Q → [0, 1] is the transition probability function
I
L : Q → Σ is a labeling function
Construct PST PST to PSA and PSA to LMC Parameter Tunning
Experiment PSA-equivalent Non PSA-equivalent
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark
Probabilistic Suffix Automata - PSA Learning Markov Models for Stationary System Behaviors
A PSA is LMC that I H : Q → Σ≤N is a extended labeling function, which represents the history of the most recent visited states. I
I
Introduction Motivation Overview
Each state qi is associated with a string si = H(qi )L(qi ). If τ (q1 , q2 ) > 0, then H(q2 ) ∈ suffix∗ (s1 ) Let S be the set of strings associated with states in the PSA, then ∀ s ∈ S, suffix∗ (s) ∩ S = {s}
Related Work
Preliminaries LMC 6
PSA & PST SPLTL
PSA Learning Construct PST
0.5 idle 0.7
0.3 cup 1
PST to PSA and PSA to LMC
cup, milk
Parameter Tunning
0.3 0.7
0.5
1
milk, milk
Experiment PSA-equivalent Non PSA-equivalent
coff
Conclusion
Figure: A PSA over Σ = {idle, cup, milk, coff} 27
Dept. of Computer Science, Aalborg University, Denmark
Prediction Suffix Tree - PST Learning Markov Models for Stationary System Behaviors
I
A tree over the alphabet Σ = {idle, cup, milk, coff}
I
Each node is labeled by a pair (s, γs ), and each edge is labeled by a symbol σ ∈ Σ
I
The parent’s string is the suffix of its children’s
Introduction Motivation Overview Related Work
Preliminaries LMC 7
PSA & PST SPLTL
0.5 idle 0.7
0.3 cup 1
e
cup, milk
1 coff
PSA Learning Construct PST
0.3 0.7
0.5
(0.57,0.16,0.1,0.16)
milk, milk
idle
cup
(0.7,0.3,0,0)
(0,0,0.5,0.5)
milk
PST to PSA and PSA to LMC
coff
Parameter Tunning
(0,0,0.3,0.7) (1,0,0,0)
cup, milk
milk, milk
(0,0,0.3,0.7)
(0,0,0,1)
Experiment PSA-equivalent Non PSA-equivalent
Conclusion
Figure: PSA and PST define the same distribution of strings over Σ
27
Dept. of Computer Science, Aalborg University, Denmark
Stationary Probabilistic LTL - SPLTL Learning Markov Models for Stationary System Behaviors
Introduction
Syntax
Motivation Overview
The syntax of stationary probabilistic LTL is:
Related Work
Preliminaries LMC
φ ::= S./r (ϕ) (./ ∈ ≥, ≤, =; r ∈ [0, 1]; ϕ ∈ LTL)
PSA & PST 8
SPLTL
PSA Learning
Semantics
Construct PST PST to PSA and PSA to LMC
For a model M, the stationary probability of an LTL property ϕ is
Parameter Tunning
Experiment
s
π M |= S./r (ϕ) iff PM ({s ∈ Σω |s |= ϕ}) ./ r
PSA-equivalent Non PSA-equivalent
Conclusion
s
for all stationary distributions π .
27
Dept. of Computer Science, Aalborg University, Denmark
Outline Learning Markov Models for Stationary System Behaviors
Introduction Motivation Overview Related Work Preliminaries LMC PSA & PST SPLTL
Introduction Motivation Overview Related Work
Preliminaries LMC PSA & PST SPLTL 9
PSA Learning Construct PST
PSA Learning Construct PST PST to PSA and PSA to LMC Parameter Tunning
PST to PSA and PSA to LMC Parameter Tunning
Experiment PSA-equivalent Non PSA-equivalent
Conclusion
Experiment PSA-equivalent Non PSA-equivalent Conclusion 27
Dept. of Computer Science, Aalborg University, Denmark
Overview Learning Markov Models for Stationary System Behaviors
e
(0.57,0.16,0.1,0.16) Introduction
(1,0,0,0)
idle
cup
milk
(0.7,0.3,0,0) (0,0,0.5,0.5)
(0,0,0.3,0.7)
cup, milk
(0,0,0.3,0.7)
(0,0,0,1)
0.5
coff
milk, milk
idle 0.7
0.3 cup 1
cup, milk
Motivation Overview
0.3 0.7
0.5
1
milk, milk
Related Work
Preliminaries LMC
coff
PSA & PST SPLTL 10
PSA Learning Construct PST PST to PSA and PSA to LMC Parameter Tunning
milk
“coff, idle, idle, cup, milk, milk, coff, idle, cup, milk, coff,….”
Experiment
0.5 idle 0.7
0.3 cup 1
0.3 0.7
0.5
PSA-equivalent
milk
Non PSA-equivalent
1
Conclusion
coff
27
Dept. of Computer Science, Aalborg University, Denmark
Construct PST I I
Learning Markov Models for Stationary System Behaviors
Start with T, only consisting root node (e), and ˜ S = {σ | σ ∈ Σ and P(σ) ≥ }. For each s ∈ S, s will be included in T if X ˜ P(σ|s) ˜ ˜ ≥ P(s) · P(σ|s) · log ˜ σ∈Σ P(σ|suffix (s))
Introduction Motivation Overview Related Work
Preliminaries LMC
I I I
˜ For each s that P(s) ≥ , for all σ 0 ∈ Σ, σ 0 s will be added into S Loop until S is empty Calculate the next symbol distribution for each node in T
PSA & PST SPLTL
PSA Learning 11
Construct PST PST to PSA and PSA to LMC Parameter Tunning
Experiment
e
PSA-equivalent Non PSA-equivalent
Conclusion
idle
cup
milk
coff
milk, milk 27
Dept. of Computer Science, Aalborg University, Denmark
Construct PST I I
Learning Markov Models for Stationary System Behaviors
Start with T, only consisting root node (e), and ˜ S = {σ | σ ∈ Σ and P(σ) ≥ }. For each s ∈ S, s will be included in T if X ˜ P(σ|s) ˜ ˜ ≥ P(s) · P(σ|s) · log ˜ σ∈Σ P(σ|suffix (s))
Introduction Motivation Overview Related Work
Preliminaries LMC
I I I
˜ For each s that P(s) ≥ , for all σ 0 ∈ Σ, σ 0 s will be added into S Loop until S is empty Calculate the next symbol distribution for each node in T
PSA & PST SPLTL
PSA Learning 11
Construct PST PST to PSA and PSA to LMC Parameter Tunning
Experiment
e
PSA-equivalent Non PSA-equivalent
Conclusion
idle
cup
milk
cup, milk
coff
milk, milk 27
Dept. of Computer Science, Aalborg University, Denmark
Construct PST I I
Learning Markov Models for Stationary System Behaviors
Start with T, only consisting root node (e), and ˜ S = {σ | σ ∈ Σ and P(σ) ≥ }. For each s ∈ S, s will be included in T if X ˜ P(σ|s) ˜ ˜ ≥ P(s) · P(σ|s) · log ˜ σ∈Σ P(σ|suffix (s))
Introduction Motivation Overview Related Work
Preliminaries LMC
I I I
˜ For each s that P(s) ≥ , for all σ 0 ∈ Σ, σ 0 s will be added into S Loop until S is empty Calculate the next symbol distribution for each node in T
PSA & PST SPLTL
PSA Learning 11
Construct PST PST to PSA and PSA to LMC Parameter Tunning
e
Experiment
(0.57,0.16,0.1,0.16)
PSA-equivalent Non PSA-equivalent
Conclusion
(1,0,0,0)
idle
cup
milk
(0.7,0.3,0,0) (0,0,0.5,0.5)
(0,0,0.3,0.7)
cup, milk
coff
(0,0,0.3,0.7)
(0,0,0,1)
milk, milk 27
Dept. of Computer Science, Aalborg University, Denmark
Transform the PST to the LMC Learning Markov Models for Stationary System Behaviors
e
(0.57,0.16,0.1,0.16) Introduction
(1,0,0,0)
idle
cup
milk
(0.7,0.3,0,0) (0,0,0.5,0.5)
(0,0,0.3,0.7)
cup, milk
coff
transform (Ron96)
0.5 idle
(0,0,0.3,0.7)
(0,0,0,1)
0.7
milk, milk
0.3 cup 1
cup, milk
Motivation Overview
0.3 0.7
0.5
1
milk, milk
Related Work
Preliminaries LMC
coff
PSA & PST SPLTL
PSA Learning
relabel
Construct PST 12
Parameter Tunning
milk
Experiment
0.5 idle 0.7
0.3 cup 1
0.3 0.7
0.5
PST to PSA and PSA to LMC
PSA-equivalent
milk
Non PSA-equivalent
1
Conclusion
coff
27
Dept. of Computer Science, Aalborg University, Denmark
Parameter Tunning Learning Markov Models for Stationary System Behaviors
Introduction
Smaller induces bigger model
Motivation Overview
˜ P(σ|s) ˜ ≥ ˜ σ∈Σ P(σ|s) · log P(σ|suffix (s))
I
˜ P(s) ·
I
˜ P(s) ≥
I
Overfitting;
Related Work
P
Preliminaries LMC PSA & PST SPLTL
PSA Learning Construct PST PST to PSA and PSA to LMC 13
Parameter Tunning
Experiment PSA-equivalent Non PSA-equivalent
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark
Parameter Tunning Learning Markov Models for Stationary System Behaviors
Introduction
Smaller induces bigger model
Motivation Overview
˜ P(σ|s) ˜ ≥ ˜ σ∈Σ P(σ|s) · log P(σ|suffix (s))
I
˜ P(s) ·
I
˜ P(s) ≥
I
Overfitting;
Related Work
P
Preliminaries LMC PSA & PST SPLTL
PSA Learning Construct PST
Bayesian Information Criterion - (BIC)
PST to PSA and PSA to LMC 13
Parameter Tunning
Experiment
I
BIC (A | Seq) := log(L(A | Seq)) − 1/2 | A | log(| Seq |)
PSA-equivalent Non PSA-equivalent
Here, | A |=| QA | ·(| Σ | −1)
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark
Outline Learning Markov Models for Stationary System Behaviors
Introduction Motivation Overview Related Work
Introduction Motivation Overview Related Work
Preliminaries LMC PSA & PST SPLTL PSA Learning Construct PST PST to PSA and PSA to LMC Parameter Tunning
Preliminaries LMC PSA & PST SPLTL
PSA Learning Construct PST PST to PSA and PSA to LMC Parameter Tunning 14
Experiment PSA-equivalent Non PSA-equivalent
Conclusion
Experiment PSA-equivalent Non PSA-equivalent Conclusion 27
Dept. of Computer Science, Aalborg University, Denmark
Experiments Setting Learning Markov Models for Stationary System Behaviors
Introduction
I
A single sequence is generated by a given LMC model
I
The difference between the generating model Mg and the learned model Ml is measured as the mean absolute difference D in stationary probability over a set Φ of randomly generated LTL formula (Computed by PRISM)
Motivation Overview Related Work
Preliminaries LMC PSA & PST SPLTL
PSA Learning
D=
Construct PST
1 X s s |PM (φ) − PM (φ)| g l φ∈Φ |Φ|
PST to PSA and PSA to LMC Parameter Tunning 15
I
PSA-equivalent
I
Non PSA-equivalent
Experiment PSA-equivalent Non PSA-equivalent
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark
PSA-equivalent Learning Markov Models for Stationary System Behaviors
An LMC M is called PSA-equivalent if there exists a PSA M 0 , such that for every string s,
Introduction
PM (s) = PM 0 (s)
Motivation Overview Related Work
Preliminaries LMC
1
1
a
a
e
PSA & PST
aa
1
SPLTL
PSA Learning
1/2
1/2 1
s
s
Construct PST
sa
1/2
(0,1,0)
1/2 1
a
s
PST to PSA and PSA to LMC
a
Parameter Tunning 16
(1
Experiment PSA-equivalent
b
b
1
Non PSA-equivalent
sa
Conclusion
(0,0.5,0.5)
(a)
(b)
(1,0,0
(c) 27
Dept. of Computer Science, Aalborg University, Denmark
Phone Model Learning Markov Models for Stationary System Behaviors
Introduction
0.6
0.6
iiir
0.2
rii
0.9
hii
0.3 0.7
PSA & PST
riir
SPLTL
PSA Learning
0.95
1
hir
0.4 0.6
LMC
0.4
0.8
hi
0.9
Construct PST
hr
t
0.6
iii
Preliminaries
0.8 0.4
Related Work
0.05 0.6
0.4
p
hiir
0.4
Overview
rir
0.1
0.3
0.6
Motivation
0.4
ri
0.7
PST to PSA and PSA to LMC
0.2
Parameter Tunning
0.1
h
Experiment 17
PSA-equivalent Non PSA-equivalent
Conclusion
Figure: Σ = {(r)ing, (i)dle, (t)alk, (p)ick-up, (h)ang-up}
(B)
27
Dept. of Computer Science, Aalborg University, Denmark
Phone Model
cont.
Learning Markov Models for Stationary System Behaviors
Introduction Motivation
Table: D is based on 507 random LTL formulas. For reference: Ddummy = 0.1569
Overview Related Work
Preliminaries LMC
|S| 320 1280 5120 10240 20480 Mg
|Ql | 5 5 10 14 14 14
PSA & PST
D 0.03200 0.04900 0.00590 0.00160 0.00049
t 0.344 0.385 0.379 0.381 0.378 0.378
rp|r 0.310 0.446 0.490 0.506 0.515 0.512
irp|ir 0.309 0.446 0.490 0.477 0.489 0.488
iirp|iir 0.309 0.446 0.490 0.409 0.414 0.424
♦i 0 0 0 0 0 0
SPLTL
PSA Learning Construct PST PST to PSA and PSA to LMC Parameter Tunning
Experiment 18
PSA-equivalent Non PSA-equivalent
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark
Self-stabilizing Protocol Learning Markov Models for Stationary System Behaviors
P1
Introduction Motivation
x1
Overview
xn
P2
Pn
Generate 3 processes
x2
“000,110,000,000,011,000,010,000,011, 000,101,000,001,000,011,000,000,001, 000,001,000,101,000,101,000,….”
Related Work
Preliminaries LMC PSA & PST
xn-1
P3
x3
SPLTL
PSA Learning
…...
Construct PST PST to PSA and PSA to LMC
Learn
Parameter Tunning
Experiment 19
PSA-equivalent Non PSA-equivalent
Conclusion
Learned Model
27
Dept. of Computer Science, Aalborg University, Denmark
Self-stabilizing Protocol Learning Markov Models for Stationary System Behaviors
P1
Introduction Motivation
x1
xn
Overview
P2
Pn
Generate 3 processes
x2
“000,110,000,000,011,000,010,000,011, 000,101,000,001,000,011,000,000,001, 000,001,000,101,000,101,000,….”
Related Work
Preliminaries LMC
xn-1
P3
x3
PSA & PST SPLTL
…...
PSA Learning
Learn
Abstract
000, 111 à 3tokens 010, 110, 011, 101, 001, 100à stable
Construct PST PST to PSA and PSA to LMC Parameter Tunning
Experiment 19
PSA-equivalent Non PSA-equivalent
Learn
Learned Model
“tokens3,stable,tokens3,stable,tokens3, stable,tokens3,tokens3,tokens3,tokens3, stable,tokens3,stable,tokens3,….”
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark
Self-stabilizing Protocol
cont.
Learning Markov Models for Stationary System Behaviors
Table: Self-stabilizing protocol with 7 processes. D is based on 503 random LTL formulas. For reference: Dd = 0.1669.
Introduction Motivation Overview Related Work
|Seq| 80 160 320 640 1280 2560 5120 10240 20480 50000 100k
time(sec) 73.0 49.4 162.9 34.3 37.2 42.0 47.9 59.3 80.7 1904.4 3435.5
Full model order |Ql | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 128 1 128
D 0.0192 0.0325 0.0292 0.0234 0.0193 0.0204 0.0182 0.0390 0.0390 0.00034 0.00071
Abstract model time(sec) order |Ql | D 1.6 1 4 0.0172 2.1 1 4 0.0079 3.3 1 4 0.0369 2.3 1 4 0.0114 4.1 1 4 0.0093 5.0 1 4 0.0054 8.9 1 4 0.0018 16.3 1 4 0.0013 31.4 1 4 0.0016 152.42 1 4 0.0011 308.9 1 4 0.0007
Preliminaries LMC PSA & PST SPLTL
PSA Learning Construct PST PST to PSA and PSA to LMC Parameter Tunning
Experiment 20
PSA-equivalent Non PSA-equivalent
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark
Self-stabilizing Protocol
cont.
Learning Markov Models for Stationary System Behaviors
1
1
0.9
0.9
0.8
0.8
Introduction Motivation
Stationary Probability
Stationary Probability
Overview
0.7 0.6 0.5 real model−3 proc. full model−3 proc. abstract model−3 proc.
0.4 0.3
real model−7 proc. full model−7 proc. abstract model−7 proc.
0.2 5
10
15 L
20
25
30
Related Work
0.7
Preliminaries
0.6
LMC
0.5
PSA & PST SPLTL
0.4 PSA Learning
0.3 0.2
real model−11 proc. abstract model−11 proc.
0.1
real model−19 proc. abstract model−19 proc.
0
0
20
40
60 L
80
100
Construct PST PST to PSA and PSA to LMC Parameter Tunning
Experiment
120 21
PSA-equivalent Non PSA-equivalent
s Figure: PM (trueU≤L stable | token = N)
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark
Self-stabilizing Protocol
cont.
7000
Learning Markov Models for Stationary System Behaviors
6000
Introduction Motivation Overview
5000
Related Work
Time
Preliminaries
4000
LMC
real model−19 proc.
3000
PSA & PST SPLTL
abstract−19 proc.
PSA Learning
real −21 proc.
Construct PST
abstract−21 proc.
2000
PST to PSA and PSA to LMC Parameter Tunning
1000
Experiment 22
0
PSA-equivalent Non PSA-equivalent
10
20 L
30
40
Conclusion
s Figure: The time for calculating PM (trueU≤L stable | token = N) in the generating model and the abstract model. 27
Dept. of Computer Science, Aalborg University, Denmark
Non PSA-equivalent Learning Markov Models for Stationary System Behaviors
Dice Model
Introduction
0.5
1 0.5
0.5
0.48
h2
0.5
t3
0.5
H
0.5
h4
0.5
0.5
0.5
1
h6
PSA & PST
1
t3
SPLTL
0.49
h4
0.5
0.18
PST to PSA and PSA to LMC
t5
T 1
Construct PST
1 0.51
1 0.5
H
T
t5
T
0.44
PSA Learning
1 0.5
T
0.45
0.48
T
Related Work
Preliminaries
h2
LMC
0.52
0.52
start
start 0.5
Overview
1
0.16
H 1
T
Motivation
t1
H
1 0.5
H
0.32
1
H
0.5
0.5
0.52
t1
0.48
Parameter Tunning
Experiment
1
PSA-equivalent
0.34
h6
23
Non PSA-equivalent
Conclusion
Figure: Left: The generating model. Right: A model learned from a sequence with 1440 symbols. 27
Dept. of Computer Science, Aalborg University, Denmark
Dice Model
cont.
Learning Markov Models for Stationary System Behaviors
Introduction
Table: D is based on 501 random LTL formulas. For reference: Ddummy = 0.1014 |S| 360 720 1440 2880 5760 11520 20000 Mg
|Ql | 13 13 13 17 17 19 21 13
D 0.0124 0.0043 0.0023 0.0023 0.0016 0.00094 0.00092
s
P (1) 0.137 0.188 0.184 0.173 0.173 0.162 0.164 0.167
s
P (2) 0.17 0.174 0.166 0.166 0.165 0.17 0.173 0.167
s
P (3) 0.182 0.174 0.169 0.159 0.153 0.176 0.171 0.167
s
P (4) 0.103 0.149 0.143 0.142 0.161 0.157 0.166 0.167
s
P (5) 0.205 0.168 0.153 0.176 0.174 0.168 0.164 0.167
Motivation Overview Related Work
Preliminaries
s
P (6) 0.203 0.147 0.185 0.184 0.174 0.167 0.162 0.167
LMC PSA & PST SPLTL
PSA Learning Construct PST PST to PSA and PSA to LMC Parameter Tunning
Experiment PSA-equivalent 24
Non PSA-equivalent
Conclusion
For the non PSA-equivalent system, the learned model still provide good approximation for SPLTL properties.
27
Dept. of Computer Science, Aalborg University, Denmark
20000 symbols! Learning Markov Models for Stationary System Behaviors
H
t1 Introduction
H
Motivation Overview
H
H
H
Related Work
h2
Preliminaries
H
LMC PSA & PST
T
t3
SPLTL
start
PSA Learning Construct PST
H
h4
PST to PSA and PSA to LMC
T
Parameter Tunning
T
T
T
Experiment
t5
PSA-equivalent 25
T T
Non PSA-equivalent
Conclusion
h6
27
Dept. of Computer Science, Aalborg University, Denmark
Outline Learning Markov Models for Stationary System Behaviors
Introduction Motivation Overview Related Work
Introduction Motivation Overview Related Work
Preliminaries LMC PSA & PST SPLTL
Preliminaries LMC PSA & PST SPLTL
PSA Learning Construct PST
PSA Learning Construct PST PST to PSA and PSA to LMC Parameter Tunning Experiment PSA-equivalent Non PSA-equivalent
PST to PSA and PSA to LMC Parameter Tunning
Experiment PSA-equivalent Non PSA-equivalent 26
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark
Conclusion
Conclusion Learning Markov Models for Stationary System Behaviors
Introduction Motivation Overview Related Work
I
Single observation sequence
I
Learning algorithms
I
SPLTL for stationary behavior
I
Experimental validation
Preliminaries LMC PSA & PST SPLTL
PSA Learning Construct PST PST to PSA and PSA to LMC Parameter Tunning
Experiment PSA-equivalent Non PSA-equivalent 27
Conclusion
27
Dept. of Computer Science, Aalborg University, Denmark