Lecture 2

Report 11 Downloads 132 Views
Statistics 36-720: Discrete Multivariate Analysis Lectures 2, Fall, 2011 Stephen E. Fienberg Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/~fienberg/Statistics36-720-11/stats36-720-11.html October, 2011

1

Temporary Webpage http://www.stat.cmu.edu/~gklein/ discrete.shtml For R handouts and data sets, SAS materials, etc.

October, 2011

2

Page 1

Lecture 2 •  Handouts –  Assignment 1 (due November 3) –  Categorical Data Analysis in R: functions for chisquare tests, Fisher’s exact test, and data frames. •  Available from course webpage only

•  Outline –  Some history –  Equivalence for 2×2 tables –  Alternative 2×2 table structures –  R function handouts October, 2011

3

Pre-History •  Quetelet (1848) –  Measuring association

•  Bienayme (1856) –  Hypergeometric analysis for 2 × 2 tables

•  Galton (1892) –  expected values: Expected Count (i, j) = Row Total (i) × Column Marginal Total (j) / Grand Total October, 2011

Page 2

!

4

Some History Yule (1900) Pearson (1900) Fisher (1922)

Bartlett (1935)

Roy & Mitra (1956); Roy & Kastenbaum (1956) Plackett (1962); Darroch (1962); Good (1963) October, 2011

5

Some History II Birch (1963,1964,1965) Goodman (1962, 1968, 1969) National Halothane Study (1969) Bishop (1966, 1969) Mosteller (1968) Haberman (1971; 1974) Bishop, Fienberg, & Holland (1975) October, 2011

6

Page 3

Some History III Nelder and Wedderburn (1972) Nelder and McCullagh (1983,1989) GLIM Darroch, Lauritzen, & Speed (1980); Lauritzen (1996)

Rinaldo (2005) October, 2011

7

Some History: IV Grizzle, Starmer, and Koch (1969)

Two historical reviews, to be posted on course webpage: Fienberg and Rinaldo (2007) Fienberg (2011) Kochfest: October 2009

Page 4

8

Table 1: Common Colds •  2 × 2 table showing incidence of common colds in double blind study involving 279 French skiers. Cold

No Cold Totals

31

109

140

Treatment 17

122

139

Totals

231

279

Placebo

48

October, 2011

9

Comparing Binomial Proportions •  Notation –  observed counts: {xij}; totals ni=Σj xij –  expected counts: {mij} –  binomial probabilities: {pi} pˆ i = x i 1 / ni i = 1,2.

•  Example: Vitamin C Cold No Cold Totals Placebo x11=31 x12= 109 n1= 140 October, 2011

Treat.

x21= 17 x22= 122 n2= 139

Page 5

10

Two Sample Test pˆ 1 − pˆ 2 =

x11 x 21 − ; n1 n2

V (pˆ 1 − pˆ 2 ) =

E (pˆ 1 − pˆ 2 ) = p1 − p2

p1 (1 − p1 ) p2 (1 − p2 ) + n1 n2

⎡1 1⎤ If H 0 : p1 = p2 = p, V (pˆ 1 − pˆ 2 ) = p(1 − p )⎢ + ⎥ ⎣ n1 n2 ⎦ pˆ 1 − pˆ 2 x + x 21 z= where p = 11 n1 + n2 ⎡1 1⎤ p(1 − p )⎢ + ⎥ October, 2011 11 ⎣ n1 n2 ⎦

Equivalence to X2 •  For example, z=2.19 and p-value