Lecture Channels with State DMC with state

Report 0 Downloads 52 Views
Lecture  Channels with State (Reading: NIT ., ., .–., .)

∙ ∙ ∙ ∙ ∙

DMC with state DMC with DM state Causal state information available at the encoder Noncausal state information available at the encoder Writing on dirty paper

© Copyright – Abbas El Gamal and Young-Han Kim

DMC with state sn

M

Encoder

Xn

p(y|x, s)

Yn

Decoder

̂ M

∙ DMC with state (X × S , p(y|x, s), Y) ∙ State: Channel uncertainty, jamming, fading, memory faults, host image ∙ Three general classes: 󳶳

Compound channel: State is fixed throughout transmission

󳶳

Arbitrarily varying channel: sn is an arbitrary sequence

󳶳

Random state

 / 

DMC with DM state Si /Sn

p(s)

Si /Sn

Si M

Xi

Encoder

p(y|x, s)

Yi

Decoder

̂ M

∙ DMC with DM state (X × S , p(y|x, s)p(s), Y) ∙ State information availability: 󳶳

Encoder, decoder, neither, both

󳶳

Noiseless, noisy, coded

󳶳

Causal (Si known before transmission i), noncausal (Sn known before transmission)

∙ For each setup, (nR , n) code, achievability, and capacity defined in the usual way

 / 

Simple special cases ∙ No state information available at either the encoder or the decoder: C = max I(X; Y), p(x)

where p(y|x) = ∑s p(s)p(y|x, s) ̂ n , sn )): ∙ State information available (causally or noncausally) at the decoder (m(y CSI-D = max I(X; Y, S) = max I(X; Y |S), p(x)

p(x)

and is achieved by treating (Y, S) as the channel output ̂ n , sn )): ∙ State information available at both encoder and decoder (xn (m, si ), m(y CSI-ED = max I(X; Y |S) p(x|s)

for both causal and noncausal cases Key achievability idea: Treat Sn as a time-sharing sequence  / 

Proof of achievability (Goldsmith–Varaiya ) ∙ Split M into independent messages with rates Rs , s ∈ S; hence ∑s Rs = R ∙ Codebook generation: 󳶳

n

For each s, generate nRs sequences xn (ms , s) ∼ ∏i= pX|S (xi |s), ms ∈ [ : nRs ]

∙ Encoding: 󳶳

To send message m = (ms : s ∈ S), store each of xn (ms , s) in a FIFO buffer for s

󳶳

In time i, transmit the first untransmitted symbol from the FIFO buffer for si s xn (m , ) xn− (m , )

x (m , )

x (m , )

xn (m , ) xn− (m , )

x (m , )

x (m , )

xn (ms , s) xn− (ms , s)

x (ms , s)

x (ms , s)

 / 

Proof of achievability (Goldsmith–Varaiya ) ∙ Split M into independent messages with rates Rs , s ∈ S; hence ∑s Rs = R ∙ Codebook generation: 󳶳

n

For each s, generate nRs sequences xn (ms , s) ∼ ∏i= pX|S (xi |s), ms ∈ [ : nRs ]

∙ Encoding: 󳶳

To send message m = (ms : s ∈ S), store each of xn (ms , s) in a FIFO buffer for s

󳶳

In time i, transmit the first untransmitted symbol from the FIFO buffer for si

∙ Decoding and the analysis of the probability of error: 󳶳 󳶳

Demultiplex the received sequence into subsequences (yns (s), s ∈ S), ∑s ns = n If sn ∈ Tє(n) , then ns ≥ n( − є)p(s) for every s ∈ S

̂ s , s), yn(−є)p(s) (s)) ∈ Tє(n) ̂ s for each s such that (xn(−є)p(s) (m Find a unique m

󳶳

By the LLN and packing lemma, Pe(n) (s) →  if Rs < ( − є)p(s)I(X; Y|S = s) − δ(є)

󳶳

Hence, Pe(n) →  if R < ( − є)I(X; Y|S) − δ(є)

 / 

Causal state information available at the encoder Si

p(s) Si

M

Xi

Encoder

Yi

p(y|x, s)

̂ M

Decoder

Theorem . (Shannon ) CCSI-E =

max I(U; Y),

p(u), x(u,s)

where U is independent of S with |U | ≤ min{(|X | − )|S| + , |Y|}

∙ Proof of the converse: Read NIT .

 / 

Proof of achievability Si

p(s) Si

M

Encoder

Ui

x(u, s)

Xi

p(y|x, s)

Yi

Decoder

̂ M

∙ Fix p(u) and x(u, s) that achieve CSI-E ∙ Shannon strategy: Attach a “physical device” x(u, s) in front of the actual channel ∙ This induces a DMC p(y|u) = ∑s p(y|x(s, u), s)p(s) with input U and output Y ∙ Now code for the induced DMC p(y|u) to achieve I(U; Y) Encoding: To send m, transmit xi = x(ui (m), si ), i ∈ [ : n]

∙ Can be viewed as coding over all functions {xu (s) : S → X } (u: function index)  / 

Noncausal state information available at the encoder Sn

p(s) Si

M

Encoder

Xi

p(y|x, s)

Yi

Decoder

̂ M

∙ Motivation for noncausal state information: 󳶳

Memory with defects

󳶳

Write-once memory

󳶳

Digital watermarking

󳶳

General broadcast channel

 / 

Memory with stuck-at faults S 





∙ ∙ ∙ ∙

p(s) p/

p/

−p

X

Y

























stuck at 

stuck at 

If the reader knows the fault locations:

CSI-D = CSI-ED =  − p

If neither the writer nor the reader knows:

C =  − H(p/)

If the writer knows the fault locations:

CSI-E = ?

Kuznetsov–Tsybakov () showed:

CSI-E =  − p  / 

Multicoding ∙ Codebook generation: Randomly partition {, }n into nR subcodebooks C() . ..

C(m) .. .

C(nR )

     . ..      .. .     

     . ..      .. .     

     . ..      .. .     

     . ..      .. .     

     . ..      .. .     

     . ..      .. .     

     . ..      .. .     

 / 

Multicoding ∙ Writing: Store m with sn : C() .. .

C(m) . . .

C(nR )















     .. .      . . .     

     .. .      . . .     

     .. .      . . .     

     .. .      . . .     

     .. .      . . .     

     .. .      . . .     

     .. .     ←  . . .     

xn

 / 

Multicoding ∙ Reading: C() .. .

C(m) . . .

C(nR )

     .. .      . . .     

     .. .      . . .     

     .. .      . . .     

     .. .      . . .     

     .. .      . . .     

     .. .      . . .     

     .. .     ←  . . .     

yn

 / 

Analysis of the probability of error

C()

C()

C()

C(nR )

∙ Error occurs iff there is no xn ∈ C(m) that matches the fault pattern ∙ For n large, there are ≈ np faults ∙ Hence, there are ≐ n(−p) that match any given fault pattern ∙ If R <  − p and n large, C(m) has a matching sequence w.h.p. ∙ Hence the capacity CSI-E =  − p

 / 

Gelfand–Pinsker theorem ∙ Gelfand–Pinsker () generalized this result to arbitrary DMC with DM state Theorem . CSI-E =

max

p(u|s), x(u,s)

󶀡I(U; Y) − I(U; S)󶀱,

where |U | ≤ min{|X | ⋅ |S|, |Y| + |S| − }

∙ Example: Memory with defects 󳶳

If S = , set U = X ∼ Bern(/)

󳶳

If S =  or , set U = X = S

󳶳

Then, I(U; Y) − I(U; S) = H(U |S) − H(U |Y) =  − p

 / 

Proof of achievability ∙ Codebook generation: Fix p(u|s) and x(u, s) that achieves CSI-E , let R̃ > R 󳶳

For each m ∈ [ : nR ], generate a subcodebook C(m) consisting of ̃ ̃ ̃ n n(R−R) sequences un (l) ∼ ∏i= pU (ui ), l ∈ [(m − )n(R−R) +  : mn(R−R) ] un u () n

C()

C(m) un (l)

C(nR ) ̃ un (nR )  / 

Proof of achievability ∙ Encoding: To send m given sn , find un (l) ∈ C(m) such that (un (l), sn ) ∈ Tє(n) 󳰀 󳶳 󳶳

If no such un (l) exists, set l =  Then transmit xi = x(ui (l), si ) for i ∈ [ : n] sn

un un () C()

C(m) un (l)

Tє(n) (U, S)

C(nR ) ̃ un (nR )  / 

Proof of achievability ∙ Decoding: 󳶳

̂ such that (un (l), yn ) ∈ Tє(n) for some un (l) ∈ C(m) ̂ Find the unique m

un u () n

C()

C(m) un (l)

C(nR ) ̃ un (nR )  / 

Analysis of the probability of error ∙ Consider P(E) conditioned on M =  ∙ Let L denote the index of the chosen U n for Sn and M =  ∙ Error events: E = 󶁁(U n (l), Sn ) ∉ Tє(n) for all U n (l) ∈ C()󶁑, 󳰀

E = 󶁁(U n (L), Y n ) ∉ Tє(n) 󶁑,

̃

E = 󶁁(U n (l), Y n ) ∈ Tє(n) for some l ∉ [ : n(R−R) ]󶁑

Thus, by the union of events bound P(E) ≤ P(E ) + P(Ec ∩ E ) + P(E )

 / 

Conditional and joint typicality lemmas Conditional typicality lemma n Let (X, Y) ∼ p(x, y) and є > є 󳰀 . If xn ∈ Tє(n) ∼ ∏ni= pY|X (yi |xi ), then 󳰀 (X), Y

lim P󶁁(xn , Y n ) ∈ Tє(n) (X, Y)󶁑 = 

n→∞

󳰀 ∙ If xn ∈ Tє(n) 󳰀 (X), є > є , then for n sufficiently large,

|Tє(n) (Y |xn )| ≥ n(H(Y|X)−δ(є))

Joint typicality lemma (part ) and Ỹ n ∼ ∏ni= pY (̃yi ), then for some Let (X, Y) ∼ p(x, y) and є > є 󳰀 . If xn ∈ Tє(n) 󳰀 δ(є) →  as є →  and n sufficiently large, P󶁁(xn , Ỹ n ) ∈ Tє(n) (X, Y)󶁑 ≥ −n(I(X;Y)+δ(є))  / 

Covering lemma (U = ) ̂ ∼ p(x, x̂) and є 󳰀 < є ∙ Let (X, X)

∙ Let X n ∼ p(xn ) be arbitrarily distributed such that lim P󶁁X n ∈ Tє(n) 󳰀 (X)󶁑 = 

n→∞

∙ Let X̂ n (m) ∼ ∏ni= pX̂ (̂xi ), m ∈ A, |A| ≥ nR , be independent of each other and of X n X̂ n

Xn

Tє(n) 󳰀 (X)

̂ n () X Xn

̂ n (m) X

 / 

Covering lemma (U = ) ̂ ∼ p(x, x̂) and є 󳰀 < є ∙ Let (X, X)

∙ Let X n ∼ p(xn ) be arbitrarily distributed such that lim P󶁁X n ∈ Tє(n) 󳰀 (X)󶁑 = 

n→∞

∙ Let X̂ n (m) ∼ ∏ni= pX̂ (̂xi ), m ∈ A, |A| ≥ nR , be independent of each other and of X n

Lemma . (Covering lemma) There exists δ(є) →  as є →  such that ̂ n (m)) ∉ T (n) for all m ∈ A󶁑 = , lim P󶁁(X n , X є

n→∞

̂ + δ(є) if R > I(X; X)

 / 

Analysis of the probability of error ∙ Error events: E = 󶁁(U n (l), Sn ) ∉ Tє(n) for all U n (l) ∈ C()󶁑, 󳰀

E = 󶁁(U n (L), Y n ) ∉ Tє(n) 󶁑,

̃

E = 󶁁(U n (l), Y n ) ∈ Tє(n) for some l ∉ [ : n(R−R) ]󶁑

̃ ̂ ← U), ∙ By the covering lemma (|A| = n(R−R) , X ← S, X

̃ − R > I(U; S) + δ(є 󳰀 ) P(E ) →  if R

∙ Since Ec = {(U n (L), X n , Sn ) ∈ Tє(n) 󳰀 } and n

n

n

n

n

n

n

n

n

i=

i=

Y |{U (L) = u , X = x , S = s } ∼ 󵠉 pY|U,X,S (yi |ui , xi , si ) = 󵠉 pY|X,S (yi |xi , si ), by the conditional typicality lemma, P(Ec ∩ E ) → 

̃ ], and Y n are independent, ∙ Since U n (l) ∼ ∏ni= pU (ui ), l ∉ [ : n(R−R)

̃ < I(U; Y) − δ(є) by the packing lemma, P(E ) →  if R

∙ Combining the bounds, P(E) →  if R < I(U; Y) − I(U; S) − δ(e󳰀 ) − δ(є)  / 

Proof of the converse (Heegard–El Gamal ) ∙ We will need the Csisz´ar sum identity: Let (U, X n , Y n ) ∼ F(u, xn , yn ), then n

n ; Yi |Y i− , U) 󵠈 I(Xi+ i=

n

n = 󵠈 I(Y i− ; Xi |Xi+ , U) i=

∙ By Fano’s inequality, nR ≤ I(M; Y n ) + nєn n

≤ 󵠈 I(M, Y i− ; Yi ) + nєn i= n

n

i= n

i= n

i= n

i= n

i=

i=

= 󵠈 I(M, Y i− , Sni+ ; Yi ) − 󵠈 I(Sni+ ; Yi |M, Y i− ) + nєn = 󵠈 I(M, Y i− , Sni+ ; Yi ) − 󵠈 I(Y i− ; Si |M, Sni+ ) + nєn = 󵠈 I(M, Y i− , Sni+ ; Yi ) − 󵠈 I(M, Sni+ , Y i− ; Si ) + nєn

∙ Now, identify Ui = (M, Sni+ , Y i− ) (Ui → (Xi , Si ) → Yi ), . . .  / 

Gaussian channel with additive Gaussian state S

Sn M

Encoder

Z Yn

Xn

Decoder

̂ M

∙ S ∼ N(, Q) and Z ∼ N(, ) are independent ∙ Average power constraint P on X ∙ State information not available at the encoder or decoder: C = C 󶀡P/( + Q)󶀱 ∙ State information available at the decoder: CSI-D = CSI-ED = C(P) ∙ State information available noncausally at the encoder (Costa ): Theorem . (Writing on dirty paper) CSI-E = C(P)  / 

Application: Digital watermarking S

Sn M

Encoder

Z

Xn

Yn

Decoder

̂ M

∙ The publisher embeds a watermark X in a host image S ∙ Given Sn , the authentication message M is encoded into watermark X n (M, Sn ) ∙ The watermark is added to image to generate watermarked image X n + Sn ∙ An authenticator wishes to retrieve M from Y n = X n + Sn + Z n , where Z ∼ N(, ) ∙ What is the optimal tradeoff between 󳶳

Capacity C (amount of watermark information) and

󳶳

Power of watermark X (determines fidelity of watermarked image)?

∙ By the writing on dirty paper, C(D) = C(D), where D is power of watermark  / 

Proof of achievability ∙ Gelfand–Pinsker theorem for the DMC with DM state and input cost: CSI-E =

max

p(u|s), x(u,s):E(b(X))≤B

󶀡I(U; Y) − I(U; S)󶀱

∙ For Gaussian channel with additive Gaussian state, find optimal F(u|s) and x(u, s) ∙ Let U = X + αS, where X ∼ N(, P) is independent of S ! ∙ With this choice, 

(P + Q + )(P + α Q)  I(U; Y) = log 󶀥 󶀵,  PQ( − α  ) + (P + α  Q) P + α Q  󶀵 I(U; S) = log 󶀥  P Thus R(α) = I(U; Y) − I(U; S) =

P(P + Q + )  log 󶀥 󶀵  PQ( − α) + (P + α  Q)

∙ Maximizing w.r.t. α, we find that α∗ = P/(P + ) and R(α∗ ) = C(P)  / 

Extensions ∙ Non-Gaussian state (Cohen–Lapidoth ): C = C(P) ∙ Vector writing on dirty paper: Read NIT ., . S

Sn M

Encoder

Xn

Z Yn

G

Decoder

̂ M

n

󳶳

Average power constraint: ∑i= E(xT (m, S, i)x(m, S, i)) ≤ nP

󳶳

S ∼ F(s) and Z ∼ N(, Ir ) are independent

󳶳

As in the scalar case, the capacity is the same as if S were not present: C=

max

F(x):E(x T x)≤P

I(X; GX + Z) =

max

K X : tr(K X )≤P

 log |GKX GT + Ir | 

 / 

Summary ∙ DMC with DM state ∙ Channel coding with side information ∙ Shannon strategy ∙ Gelfand–Pinsker coding: 󳶳

Multicoding (subcodebook generation)

󳶳

Joint typicality encoding

∙ Covering lemma ∙ Writing on dirty paper ∙ Vector writing on dirty paper

 / 

References Cohen, A. S. and Lapidoth, A. (). The Gaussian watermarking game. IEEE Trans. Inf. Theory, (), –. Costa, M. H. M. (). Writing on dirty paper. IEEE Trans. Inf. Theory, (), –. Gelfand, S. I. and Pinsker, M. S. (). Coding for channel with random parameters. Probl. Control Inf. Theory, (), –. Goldsmith, A. J. and Varaiya, P. P. (). Capacity of fading channels with channel side information. IEEE Trans. Inf. Theory, (), –. Heegard, C. and El Gamal, A. (). On the capacity of computer memories with defects. IEEE Trans. Inf. Theory, (), –. Kuznetsov, A. V. and Tsybakov, B. S. (). Coding in a memory with defective cells. Probl. Inf. Transm., (), –. Shannon, C. E. (). Channels with side information at the transmitter. IBM J. Res. Develop., (), –.

 / 