leffler

Report 3 Downloads 100 Views
BIOFLOC DYNAMICS IN SUPER -INTENSIVE SUPER-INTENSIVE SHRIMP RACEWAYS:

John John Leffler, Leffler, Heidi Heidi Atwood, Atwood, Brad Brad McAbee, McAbee, Patrick Patrick Brown, Brown, Steve Steve Morton, Morton, Susan Susan Wilde, Wilde, and and Craig Craig L. L. Browdy Browdy

World World Aquaculture Aquaculture Society Society 2007 2007 San San Antonio, Antonio, Texas Texas February February 28, 28, 2007 2007

Consortium Partners Oceanic Institute Center for Applied Aquaculture and Marine Biotechnology

University of S. Mississippi Gulf Coast Research Laboratory

Hawaii

Mississippi

S.C. Dept. Natural Resources

Texas A&M University

Waddell Mariculture Center

Texas Ag. Experiment Station

South Carolina

Texas

Tufts University

University of Arizona

Tufts Cummings School of Veterinary Medicine

Department of Veterinary Science

Massachusetts

Arizona

Nicholls State University

Department of Biological Science Louisiana

BIOFLOC DYNAMICS IN SUPER-INTENSIVE SHRIMP RACEWAYS: THE GOOD

THE BAD

THE UGLY

South Carolina Department of Natural Resources Marine Resources Research Institute Charleston, South Carolina Waddell Mariculture Center Bluffton, South Carolina

Engineering the Next Generation Systems

!" Disease-free stock Disease Disease-free stock Biosecure Biosecure raceways raceways Density -750/m33 300 Density 300300-750/m Oxygen Oxygen injection injection High organic” organic” diets High protein protein ““organic” diets Low Low salinity salinity -- 15 15 ppt ppt Heat Heat exchange exchange systems systems Sludge Sludge capture, capture, dewatering dewatering Water Water reuse reuse between between crops crops Waste Waste conversion conversion

=

#

$$



%$ )* '

$+ )"

*(

!

&' (

"

Microscopic Observations of BioFloc

C A B

Phase Contrast

C

A - Bacterial filament B - Chroococcus – cyanobacterium C - Scenedesmus dimorphus – green alga

B

Epifluorescence

SCDNR Waddell Mariculture Center

Experimental Raceways Raceways 1 and 2 55 m3 each

Raceway 3 282 m3

"

" ,

" -

Photo by M. Parrow, Center for Applied Aquatic Ecology.

BioFloc Composition Changes over Time restocked

Bacteria Diatoms Heterotrophic protistans

Cyanobacteria Dinoflagellates Heterotrophic animals

Raceway 1

Green algae Pfiesteria, PLOs

10/10

10/3

9/26

9/19

9/12

9/5

8/29

8/22

8/15

8/8

8/1

7/25

7/18

7/11

7/4

6/27

6/20

6/13

6/6

5/30

5/23

5/16

5/9

harvest

7/25

7/4

Diatoms

7/18

6/26

Heterotrophic protistans

7/11

7/4

Pfiesteria, PLOs

6/27

6/20

Green algae

6/13

Cyanobacteria 6/6

Dinoflagellates

5/30

5/23

Bacteria

5/16

5/9

Correlating Shrimp Growth Rate with Composition of BioFloc Community

7/11

7/18

7/25

Heterotrophic animals

1.0

grams/week

0.9 0.8

Raceway 1

0.7 0.6

)"

0.5 0.4 0.3 0.2

* ."

/

0.1 0.0 5/9

5/16

5/23

5/30

6/6

6/13

6/19

RW1

Synechococcus

RW1Mean Wt

1.20

RW2 Mean Wt

6/13

6/6

5/30

5/23

5/16

5/9

5/2

1.40 1.00 0.80 0.60 0.40 0.20

5/23

5/30

6/6

6/13

6/13

5/16

6/6

5/9

5/30

5/2

5/23

4/25

5/16

4/18

5/9

0.00

5/2

Growth Rates of PL’s Stocked in “Identical” Raceways

4/25

1.60

4/18

(microcystins) microcystins)

4/25

Diatoms in bacterial matrix

4/18

RW2

Bacteria Diatoms Heterotrophic protistans

Cyanobacteria Dinoflagellates Heterotrophic animals

5

RW1Mean Wt

4

RW2 Mean Wt

3

RW1 Het-Aut

7/25

7/18

7/11

7/4

6/27

6/20

6/13

6/6

5/30

5/23

5/16

5/9

5/2

6

4/25

Shrimp Growth Rates Converge when BioFloc Community Compositions Converge

4/18

RW1

RW2 Het-Aut

2 1 0

4/18 4/25 5/2 5/9 5/16 5/23 5/30 6/6 6/13 6/19 6/26 7/4 7/11 7/18 7/25

7/25

7/18

7/11

7/4

Green algae Pfiesteria, PLOs 6/27

6/20

6/13

6/6

Cyanobacteria Dinoflagellates Heterotrophic animals 5/30

5/23

5/16

5/9

5/2

Bacteria Diatoms Heterotrophic protistans 4/25

Both became strongly heterotrophic, bacterial driven communities

4/18

RW 2

1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5

Similar Correlations between Growth Rates and BioFloc Community Composition 2.50 2.00 1.50 1.00 0.50

Bacteria Diatoms Heterotrophic protistans

Cyanobacteria Dinoflagellates Heterotrophic animals

Raceway 3

Diatoms, less bacterial floc

Green algae Pfiesteria, PLOs

10/10

10/3

9/26

9/19

9/12

9/ 5 9/ 12 9/ 19 9/ 26 10 /3

9/5

8/29

8/22

8/15

8/8

8/ 1 8/ 8 8/ 15 8/ 22 8/ 29

8/1

7/25

7/18

7/11

7/4

6/27

6/20

6/13

6/ 6 6/ 13 6/ 19 6/ 26 7/ 4 7/ 11 7/ 18 7/ 25

6/6

5/30

5/23

5/16

5/9

5/2

5/ 2 5/ 9 5/ 16 5/ 23 5/ 30

0.00

Bacterial floc, bacteriovores

And now … the “UGLY” Floc 2.50 2.00 1.50 1.00 0.50

9/ 5 9/ 12 9/ 19 9/ 26 10 /3

8/ 1 8/ 8 8/ 15 8/ 22 8/ 29

6/ 6 6/ 13 6/ 19 6/ 26 7/ 4 7/ 11 7/ 18 7/ 25

5/ 2 5/ 9 5/ 16 5/ 23 5/ 30

0.00

Bacteria Diatoms Heterotrophic protistans

Cyanobacteria Dinoflagellates Heterotrophic animals

Raceway 3

Green algae Pfiesteria, PLOs

10/10

10/3

9/26

9/19

9/12

9/5

8/29

8/22

8/15

8/8

8/1

7/25

7/18

7/11

7/4

6/27

6/20

6/13

6/6

5/30

5/23

5/16

5/9

5/2

Pfiesteria

Pfiesteria

a heterotrophic dinoflagellate warm months in brackish water Pfiesteria or its toxins may cause fish kills Toxins, if present, may be inhaled or absorbed through the skin Headaches, dizziness, skin or eye irritation, skin lesions, nausea, intestinal distress, short-term memory loss

Photo by M. Parrow, Center for Applied Aquatic Ecology.

# $#

! $

Pfiesteria in Raceway 3 - 2006 June 7 – no PLO’s June 14 – Abundant PLO’s: 1,478 cells/mL Real time PCR: Pfiesteria piscicida June 15 – Preliminary guidelines for raceway staff: ventilate building; avoid contact with water; alcohol wash; change clothing June 16-22 – PLO counts: 2,655 - 2,966 cells/mL - Fish bioassays run by NCSU lab - Pfiesteria toxin assays run by NOAAHollings Marine Laboratory - Samples screened for PLO’s from most WMC ponds, raceways, and river

Pfiesteria in Raceway 3 - 2006 June 21 – Safety measures implemented facility wide; Temporary containment of all water, shrimp and fish on site June 22 – Fish and chemical assays negative for toxins June 23 – SC Harmful Algal Task Force Emergency Meeting June 28 – No PLO’s; Pfiesteria by PCR only - No further occurrences

Did Pfiesteria Affect Shrimp? 2.50 2.00 1.50 1.00 0.50

9/ 5 9/ 12 9/ 19 9/ 26 10 /3

8/ 1 8/ 8 8/ 15 8/ 22 8/ 29

6/ 6 6/ 13 6/ 19 6/ 26 7/ 4 7/ 11 7/ 18 7/ 25

5/ 2 5/ 9 5/ 16 5/ 23 5/ 30

0.00

Bacteria Diatoms Heterotrophic protistans

Cyanobacteria Dinoflagellates Heterotrophic animals

Raceway 3

Green algae Pfiesteria, PLOs

10/10

10/3

9/26

9/19

9/12

9/5

8/29

8/22

8/15

8/8

8/1

7/25

7/18

7/11

7/4

6/27

6/20

6/13

6/6

5/30

5/23

5/16

5/9

5/2

Pfiesteria

Conclusions BioFloc is key to super-intensive, greenhouse shrimp production BioFloc is a complex microbial community BioFloc community structure is dynamic BioFloc community structure may directly influence shrimp productivity Some BioFloc species may have potential to impact human health

Current Research Monitor BioFloc communities quantitatively and correlate with shrimp productivity Understand parameters controlling BioFloc structure and function Develop management tools to guide BioFloc communities into optimal composition Integrate desirable BioFloc community composition into protocols for organic shrimp production

www.usmsfp.org Funded through Cooperative State Research , Education and Extension Service U.S. Department of Agriculture