BIOFLOC DYNAMICS IN SUPER -INTENSIVE SUPER-INTENSIVE SHRIMP RACEWAYS:
John John Leffler, Leffler, Heidi Heidi Atwood, Atwood, Brad Brad McAbee, McAbee, Patrick Patrick Brown, Brown, Steve Steve Morton, Morton, Susan Susan Wilde, Wilde, and and Craig Craig L. L. Browdy Browdy
World World Aquaculture Aquaculture Society Society 2007 2007 San San Antonio, Antonio, Texas Texas February February 28, 28, 2007 2007
Consortium Partners Oceanic Institute Center for Applied Aquaculture and Marine Biotechnology
University of S. Mississippi Gulf Coast Research Laboratory
Hawaii
Mississippi
S.C. Dept. Natural Resources
Texas A&M University
Waddell Mariculture Center
Texas Ag. Experiment Station
South Carolina
Texas
Tufts University
University of Arizona
Tufts Cummings School of Veterinary Medicine
Department of Veterinary Science
Massachusetts
Arizona
Nicholls State University
Department of Biological Science Louisiana
BIOFLOC DYNAMICS IN SUPER-INTENSIVE SHRIMP RACEWAYS: THE GOOD
THE BAD
THE UGLY
South Carolina Department of Natural Resources Marine Resources Research Institute Charleston, South Carolina Waddell Mariculture Center Bluffton, South Carolina
Engineering the Next Generation Systems
!" Disease-free stock Disease Disease-free stock Biosecure Biosecure raceways raceways Density -750/m33 300 Density 300300-750/m Oxygen Oxygen injection injection High organic” organic” diets High protein protein ““organic” diets Low Low salinity salinity -- 15 15 ppt ppt Heat Heat exchange exchange systems systems Sludge Sludge capture, capture, dewatering dewatering Water Water reuse reuse between between crops crops Waste Waste conversion conversion
=
#
$$
%$ )* '
$+ )"
*(
!
&' (
"
Microscopic Observations of BioFloc
C A B
Phase Contrast
C
A - Bacterial filament B - Chroococcus – cyanobacterium C - Scenedesmus dimorphus – green alga
B
Epifluorescence
SCDNR Waddell Mariculture Center
Experimental Raceways Raceways 1 and 2 55 m3 each
Raceway 3 282 m3
"
" ,
" -
Photo by M. Parrow, Center for Applied Aquatic Ecology.
BioFloc Composition Changes over Time restocked
Bacteria Diatoms Heterotrophic protistans
Cyanobacteria Dinoflagellates Heterotrophic animals
Raceway 1
Green algae Pfiesteria, PLOs
10/10
10/3
9/26
9/19
9/12
9/5
8/29
8/22
8/15
8/8
8/1
7/25
7/18
7/11
7/4
6/27
6/20
6/13
6/6
5/30
5/23
5/16
5/9
harvest
7/25
7/4
Diatoms
7/18
6/26
Heterotrophic protistans
7/11
7/4
Pfiesteria, PLOs
6/27
6/20
Green algae
6/13
Cyanobacteria 6/6
Dinoflagellates
5/30
5/23
Bacteria
5/16
5/9
Correlating Shrimp Growth Rate with Composition of BioFloc Community
7/11
7/18
7/25
Heterotrophic animals
1.0
grams/week
0.9 0.8
Raceway 1
0.7 0.6
)"
0.5 0.4 0.3 0.2
* ."
/
0.1 0.0 5/9
5/16
5/23
5/30
6/6
6/13
6/19
RW1
Synechococcus
RW1Mean Wt
1.20
RW2 Mean Wt
6/13
6/6
5/30
5/23
5/16
5/9
5/2
1.40 1.00 0.80 0.60 0.40 0.20
5/23
5/30
6/6
6/13
6/13
5/16
6/6
5/9
5/30
5/2
5/23
4/25
5/16
4/18
5/9
0.00
5/2
Growth Rates of PL’s Stocked in “Identical” Raceways
4/25
1.60
4/18
(microcystins) microcystins)
4/25
Diatoms in bacterial matrix
4/18
RW2
Bacteria Diatoms Heterotrophic protistans
Cyanobacteria Dinoflagellates Heterotrophic animals
5
RW1Mean Wt
4
RW2 Mean Wt
3
RW1 Het-Aut
7/25
7/18
7/11
7/4
6/27
6/20
6/13
6/6
5/30
5/23
5/16
5/9
5/2
6
4/25
Shrimp Growth Rates Converge when BioFloc Community Compositions Converge
4/18
RW1
RW2 Het-Aut
2 1 0
4/18 4/25 5/2 5/9 5/16 5/23 5/30 6/6 6/13 6/19 6/26 7/4 7/11 7/18 7/25
7/25
7/18
7/11
7/4
Green algae Pfiesteria, PLOs 6/27
6/20
6/13
6/6
Cyanobacteria Dinoflagellates Heterotrophic animals 5/30
5/23
5/16
5/9
5/2
Bacteria Diatoms Heterotrophic protistans 4/25
Both became strongly heterotrophic, bacterial driven communities
4/18
RW 2
1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5
Similar Correlations between Growth Rates and BioFloc Community Composition 2.50 2.00 1.50 1.00 0.50
Bacteria Diatoms Heterotrophic protistans
Cyanobacteria Dinoflagellates Heterotrophic animals
Raceway 3
Diatoms, less bacterial floc
Green algae Pfiesteria, PLOs
10/10
10/3
9/26
9/19
9/12
9/ 5 9/ 12 9/ 19 9/ 26 10 /3
9/5
8/29
8/22
8/15
8/8
8/ 1 8/ 8 8/ 15 8/ 22 8/ 29
8/1
7/25
7/18
7/11
7/4
6/27
6/20
6/13
6/ 6 6/ 13 6/ 19 6/ 26 7/ 4 7/ 11 7/ 18 7/ 25
6/6
5/30
5/23
5/16
5/9
5/2
5/ 2 5/ 9 5/ 16 5/ 23 5/ 30
0.00
Bacterial floc, bacteriovores
And now … the “UGLY” Floc 2.50 2.00 1.50 1.00 0.50
9/ 5 9/ 12 9/ 19 9/ 26 10 /3
8/ 1 8/ 8 8/ 15 8/ 22 8/ 29
6/ 6 6/ 13 6/ 19 6/ 26 7/ 4 7/ 11 7/ 18 7/ 25
5/ 2 5/ 9 5/ 16 5/ 23 5/ 30
0.00
Bacteria Diatoms Heterotrophic protistans
Cyanobacteria Dinoflagellates Heterotrophic animals
Raceway 3
Green algae Pfiesteria, PLOs
10/10
10/3
9/26
9/19
9/12
9/5
8/29
8/22
8/15
8/8
8/1
7/25
7/18
7/11
7/4
6/27
6/20
6/13
6/6
5/30
5/23
5/16
5/9
5/2
Pfiesteria
Pfiesteria
a heterotrophic dinoflagellate warm months in brackish water Pfiesteria or its toxins may cause fish kills Toxins, if present, may be inhaled or absorbed through the skin Headaches, dizziness, skin or eye irritation, skin lesions, nausea, intestinal distress, short-term memory loss
Photo by M. Parrow, Center for Applied Aquatic Ecology.
# $#
! $
Pfiesteria in Raceway 3 - 2006 June 7 – no PLO’s June 14 – Abundant PLO’s: 1,478 cells/mL Real time PCR: Pfiesteria piscicida June 15 – Preliminary guidelines for raceway staff: ventilate building; avoid contact with water; alcohol wash; change clothing June 16-22 – PLO counts: 2,655 - 2,966 cells/mL - Fish bioassays run by NCSU lab - Pfiesteria toxin assays run by NOAAHollings Marine Laboratory - Samples screened for PLO’s from most WMC ponds, raceways, and river
Pfiesteria in Raceway 3 - 2006 June 21 – Safety measures implemented facility wide; Temporary containment of all water, shrimp and fish on site June 22 – Fish and chemical assays negative for toxins June 23 – SC Harmful Algal Task Force Emergency Meeting June 28 – No PLO’s; Pfiesteria by PCR only - No further occurrences
Did Pfiesteria Affect Shrimp? 2.50 2.00 1.50 1.00 0.50
9/ 5 9/ 12 9/ 19 9/ 26 10 /3
8/ 1 8/ 8 8/ 15 8/ 22 8/ 29
6/ 6 6/ 13 6/ 19 6/ 26 7/ 4 7/ 11 7/ 18 7/ 25
5/ 2 5/ 9 5/ 16 5/ 23 5/ 30
0.00
Bacteria Diatoms Heterotrophic protistans
Cyanobacteria Dinoflagellates Heterotrophic animals
Raceway 3
Green algae Pfiesteria, PLOs
10/10
10/3
9/26
9/19
9/12
9/5
8/29
8/22
8/15
8/8
8/1
7/25
7/18
7/11
7/4
6/27
6/20
6/13
6/6
5/30
5/23
5/16
5/9
5/2
Pfiesteria
Conclusions BioFloc is key to super-intensive, greenhouse shrimp production BioFloc is a complex microbial community BioFloc community structure is dynamic BioFloc community structure may directly influence shrimp productivity Some BioFloc species may have potential to impact human health
Current Research Monitor BioFloc communities quantitatively and correlate with shrimp productivity Understand parameters controlling BioFloc structure and function Develop management tools to guide BioFloc communities into optimal composition Integrate desirable BioFloc community composition into protocols for organic shrimp production
www.usmsfp.org Funded through Cooperative State Research , Education and Extension Service U.S. Department of Agriculture