Lesson 14 Learning Objectives 1. Compare and contrast the ...

Report 4 Downloads 24 Views
Lesson  14   Learning  Objectives   1. 2. 3. 4.

Compare  and  contrast  the  morphology  of  the  brachiopods  and  bivalves;  ✔   Compare  and  contrast  brachiopod  and  bivalve  shell  mechanics  and  feeding  efficiency;  ✔   Distinguish  inarticulate  from  articulate  brachiopods;  ✔   List  and  describe  the  4  main  modes  of  life  seen  in  the  brachiopods  and  the  6  main  modes  of  life  seen   in  the  bivalves;  ✔   5. Interpret  the  contrasting  biological  histories  of  the  bivalves  and  brachiopods.  ✔       • •

The  modes  of  life  for  the  majority  of  bivalves  and  brachiopods  are  independent  of  reef  systems.   Bivalves  and  brachiopods  look  similar  on  the  outside,  but  they  are  very  different  internally  and  are   not  closely  related.  

  Brachiopods   • Marine  filter  feeders,  majority  of  the  30,000  species  are  now  extinct,  only  about  300  species  remain.   • Habitat:  Ranges  from  intertidal  zone  to  depths  of  6,000  meters,  and  range  from  the  tropics  to  the   Polar  Regions.   • Symmetry:  Contains  two  shells/valves,  brachiopods  are  equilateral  but  inequivalved.  This  means   each  valve  is  symmetric,  but  the  two  valves  are  not  mirror  images  of  one  another.   • Morphology:     o Respiration  and  feeding  occurs  using  an  organ  called  lophophore,  it  takes  up  2/3  of  the  body   cavity.     o The  rest  of  the  body  cavity  contains  organs  responsible  for  digestion,  reproduction,  excretion,   nervous/sensory,  and  circulation.     o The  pedicle  is  a  fleshy  stalk  that  protrudes  from  the  animal  used  to  attach  the  animal  to   surfaces.  Also  have  adjustor  muscles  to  reorient  itself  with  respect  to  the  pedicle.   o The  size  of  the  animal  is  limited  by  the  size  of  the  lophophore,  complex  structures  called   brachidia  help  support  larger  lophophores,  they  are  attached  to  the  shell  and  are  shaped  like   a  loop  or  spiral.   • Classification:  There  are  two  classes  of  brachiopods,  the  Articulata  and  Inarticulata.  The   difference  between  the  two  is  in  the  system  used  for  opening  and  closing  the  valves.   o Articulata:  Uses  a  hinge  and  muscle  system,  along  with  teeth  and  sockets  to  keep  the  valves   closed.  The  adductor  muscle  is  responsible  for  closing  the  valves,  and  the  diductor  muscle   is  responsible  for  opening  the  valves  (up  to  10°).                         The  cardinal  process  is  a  projection  at  the  posterior  edge     of  the  dorsal  valve  where  the  diductor  muscle  is  attached.        





o Inarticulata:  No  hinge  with  a  tooth  and  socket  system  exists,  the  valves  are  held  together   purely  by  muscles.  To  open  the  valves,  muscles  squeeze  the  body  cavity,  making  it  bulge  out,   therefore  pushing  the  valves  open  (up  to  10°).   Modes  of  life:  There  are  four  modes  of  life  for  brachiopods.  Three  are  epifaunal,  including  attached,   cementing,  and  free-­‐lying;  one  is  infaunal,  the  burrowing  brachiopods.   o Attached:  Most  common  mode  of  life  for  brachiopods.  A  pedicle  protrudes  from  a  hole  on  the   ventral  valve  called  pedicle  foramen,  and  attaches  to  the  substrate.  An  important   characteristic  of  epifaunal  attached  brachiopods  is  loop-­‐shaped  brachidia.   o Cemented:  One  valve  is  cylindrical  in  shape  and  cements  to  the  substrate.  The  second  valve   forms  a  cap  on  top  of  the  cylindrical  valve.  This  group  formed  an  important  part  of  the   Permian  reef  system.  End-­‐Permian  mass  extinction  eliminated  this  species.   o Free-­‐lying:  Juveniles  are  attached  to  the  substrate  via  pedicles,  however,  adults  are  large   enough  to  be  able  to  sit  under  their  own  weight.  Pedicle  is  lost  and  the  foramen  is  sealed  off.   Their  large  size  (15-­‐30cm)  requires  spiral-­‐shaped  brachidia  to  support  a  larger  lophophore.   Ordovician  to  Jurassic.   o Burrowing:  Only  one  species  in  this  group,  the  lingulids.  They  live  in  sandy/muddy   substrates,  burrowing  head-­‐first,  then  making  a  U-­‐turn  and  coming  back  out  the  substrate.   The  animal  attaches  to  the  substrate  by  mucus  on  its  pedicle.  Lingulids  do  not  have  brachidia,   the  lophophore  has  two  types  of  cilia,  one  for  inhaling  water  and  one  for  exhaling.  Cambrian   to  present.   History:     o Large,  complex,  and  abundant  in  Early  Cambrian.  Inarticulata  were  dominant  until  Middle   Cambrian.   o By  Ordovician,  Articulata  were  dominant.  Cementing  brachiopods  appeared  in  the  Devonian.   End-­‐Devonian  mass  extinction  strongly  affected  brachiopods.  Decline  continued  into   Mississippian  and  Pennsylvanian.   o Permian  was  a  time  of  moderate  diversity,  brachiopods  became  framework  organisms  for   reefs.  End-­‐Permian  extinction  exterminated  entire  families.  

  Bivalves   • Became  more  prominent  after  the  end-­‐Permian  extinction.  30,000  species  exist  today.   • Habitat:  Mostly  marine,  one  species  lives  in  fresh  water.  Examples  include  clams,  mussels,  and   oysters.   • Feeding:  Majority  are  filter  feeders,  some  are  deposit  feeders  and  some  are  carnivorous  on  larger   prey.  One  genus  is  parasitic,  living  in  the  gut  of  sea  cucumbers.   • Symmetry:  Equivalved  and  inequilateral.  Meaning  the  two  valves  are  mirror  images  of  one   another,  but  each  valve  is  not  symmetrical  when  a  line  is  drawn  down  the  middle.   • Morphology:  Bivalves  have  digestive,  reproductive,  excretory,  nervous,  and  circulatory  systems,  in   addition,  they  have  a  large  gill,  a  foot,  and  adductor  muscles.   • Muscle  scars:  The  muscle  scars  on  the  shell  can  tell  us  about  a  bivalve’s  lifestyle.   o Monomyarian:  A  single  adductor  muscle  scar,  generally  found  in  epifaunal  groups.   o Dimyarian:  Two  adductor  muscle  scars,  there  are  two  types:  Isomyarian  and   Anisomyarian,  generally  found  in  infaunal  bivalves.                  











   

Muscle  system:  Bivalve  valves  are  connected  at  the  top  by  an  elastic  ligament  made  of  protein.  This   ligament  naturally  keeps  bivalve  valves  open;  opening  the  valves  requires  no  muscles.  Teeth  and   socket  occur  on  both  valves  to  stabilize  the  shell,  and  adductor  muscles  are  used  to  close  the  valves.   Pallial  line:  A  membrane  called  a  mantle  surrounds  the  soft  parts,  it  secretes  the  ligament,  valves,   and  hinge  teeth.  Where  the  membrane  attaches  to  the  shell,  near  the  exterior  edges  of  the  inside,   there  is  a  mark  called  a  pallial  line.   Bivalve  foot:  Large,  muscular  foot  that  can  be  used  to  anchor  the  animal  to  the  substrate,  or  move   away  from  threats.  Byssal  threads  can  be  secreted  from  the  foot  to  permanently  anchor  to  the   substrate.   Bivalve  gills:  Has  many  folded  surfaces,  leading  to  a  huge  surface  area  to  volume  ratio.  This  makes   bivalves  very  efficient  at  respiration.  Gills  are  covered  with  cilia,  these  generate  current  drawing   water  in  for  gas  exchange  and  also  for  filter  feeding.   Modes  of  life:  There  are  six  modes  of  life  for  bivalves;  four  are  epifaunal,  including  bysally-­‐ attached,  cementing,  free-­‐lying,  and  swimming.  Two  are  infaunal.  including  burrowing  and   boring  bivalves.   1. Bysally-­‐attached:  Animals  are  attached  to  hard  substrates  using  byssal  threads.  The  threads   allow  the  animals  to  sway  in  currents,  reducing  the  stress  on  the  shell.  They  tend  to  be  found   in  high-­‐energy  environments.  Example  includes  modern  day  mussels.   2. Cementing:  Bivalves  that  are  cemented  to  the  substrate.  Example  includes  rudist  bivalves,   one  valve  was  large  and  conical  and  cemented  to  the  substrate  or  another  bivalve,  the  other   valve  is  smaller  and  forms  a  cap.  Rudist  bivalves  first  appeared  in  the  Jurassic,  and  were  an   important  framework  component  in  Cretaceous  reef  systems.  Eliminated  by  the  end-­‐ Cretaceous  mass  extinction.  Modern  day  example  includes  oysters.   3. Free-­‐lying:  This  group  thickens  the  bottom  of  its  shell  by  secreting  calcium  carbonate.  They   have  zooxanthellae  living  in  their  tissue  in  a  symbiotic  relationship.  Tridacna  Maxima  is  the   largest  species,  they  can  weigh  up  to  225kg  and  attain  a  length  of  1.2m.  They  are  generally   found  in  shallow  waters  in  a  reef  setting.  Gryphaea  is  a  Jurassic  species,  also  known  as  “Devil’s   toe  nails”.   4. Swimming:  Thin-­‐shelled  bivalves  that  live  on  the  substrate,  they  can  pressurize  water   internally,  and  jet-­‐propel  themselves  when  the  valves  are  opened.  This  lifestyle  has  been   around  since  the  Silurian.  Example  includes  scallops.    Infaunal  bivalves  have  two  siphons  that  protrude  out  of  the  animal  and  through  the  sediment,   exposed  on  the  ocean  floor.  These  are  used  to  take  in  food  and  exhale  waste  material.    When  the  animal  moves,  the  siphons  are  retracted  and  are  stored  in  the  pallial  sinus.  Which  is   an  inward  bend  in  the  posterior  portion  of  the  pallial  line.   5. Burrowing:  Tend  to  have  compact,  narrow,  and   elongated  shells,  which  allows  them  to  efficiently  burrow   into  sediment.  They  burrow  by  contracting  the  two   adductor  muscles,  which  creates  a  rocking  motion.   Burrowing  bivalves  that  have  siphons  have  a  permanent   opening  in  the  shell,  which  allows  siphons  to  protrude  out   even  when  the  valves  are  closed,  this  is  called  a  gape.   Shallow  species  tend  to  lack  a  siphon.   6. Boring:  Tend  to  have  thick  shells,  they  bore  into  hard   substrates  using  weak  acids,  or  mechanical  means  by   opening/closing  the  valves,  or  moving  the  valves  back   and  forth  creating  a  grinding  action.  The  shell  is  generally   not  articulated,  a  hinge  is  unnecessary  as  they  live   permanently  in  hard  substrates.  They  tend  to  live  in  near-­‐ shore,  tidal  areas.  







 

History:     o First  evolved  in  the  Cambrian,  but  was  a  minor  player  during  this  time.  Diversified  in  the   Ordovician,  significant  presence  in  the  benthic  fauna  by  late  Ordovician.   o By  Permian,  bivalves  with  siphons  evolved,  this  allowed  them  to  burrow  into  substrates  more   efficiently.   o Triassic  was  a  turning  point  for  bivalves,  end-­‐Permian  extinction  provided  many  niche  space   for  new  species.   o During  Mesozoic,  epifaunal  and  infaunal  groups  increased  in  diversity,  following  radiation  of   shell  crushers  and  borers  like  snails  and  crabs.   o Foray  into  reef  framework  during  Cretaceous,  strongly  affected  by  end-­‐Cretaceous  extinction.   Survivors  provided  major  expansion  for  post-­‐Cretaceous  and  remain  highly  successful  today.   Differences  between  brachiopods  and  bivalves:  

Before  the  end-­‐Permian  extinction,  brachiopods  were  more  dominant  than  bivalves.  However,  95%   of  brachiopods  went  extinct  and  only  60%  of  bivalves  went  extinct.  Following  the  end-­‐Permian   extinction,  and  even  more  so  after  the  end-­‐Cretaceous  extinction,  bivalves  became  much  more   successful  than  brachiopods.