Lesson 15: Using the Quadratic Formula

Report 6 Downloads 182 Views
Lesson 15

NYS COMMON CORE MATHEMATICS CURRICULUM

M4

ALGEBRA I

Lesson 15: Using the Quadratic Formula Classwork Opening Exercises Solve the following: 1.

4๐‘ฅ๐‘ฅ 2 + 5๐‘ฅ๐‘ฅ + 3 = 2๐‘ฅ๐‘ฅ 2 โˆ’ 3๐‘ฅ๐‘ฅ

2.

๐‘๐‘ 2 โˆ’ 14 = 5๐‘๐‘

Exercises Solve Exercises 1โ€“5 using the quadratic formula. 1.

๐‘ฅ๐‘ฅ 2 โˆ’ 2๐‘ฅ๐‘ฅ + 1 = 0

Lesson 15: Date:

Using the Quadratic Formula 11/19/14

ยฉ 2014 Common Core, Inc. Some rights reserved. commoncore.org

S.78 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

NYS COMMON CORE MATHEMATICS CURRICULUM

Lesson 15

M4

ALGEBRA I

2.

3๐‘๐‘ 2 + 4๐‘๐‘ + 8 = 0

3.

2๐‘ก๐‘ก 2 + 7๐‘ก๐‘ก โˆ’ 4 = 0

4.

๐‘ž๐‘ž 2 โˆ’ 2๐‘ž๐‘ž โˆ’ 1 = 0

5.

๐‘š๐‘š2 โˆ’ 4 = 3

Lesson 15: Date:

Using the Quadratic Formula 11/19/14

ยฉ 2014 Common Core, Inc. Some rights reserved. commoncore.org

S.79 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Lesson 15

NYS COMMON CORE MATHEMATICS CURRICULUM

M4

ALGEBRA I

For Exercises 6โ€“9, determine the number of real solutions for each quadratic equation without solving. 6.

๐‘๐‘2 + 7๐‘๐‘ + 33 = 8 โˆ’ 3๐‘๐‘

7.

7๐‘ฅ๐‘ฅ 2 + 2๐‘ฅ๐‘ฅ + 5 = 0

8.

2๐‘ฆ๐‘ฆ 2 + 10๐‘ฆ๐‘ฆ = ๐‘ฆ๐‘ฆ 2 + 4๐‘ฆ๐‘ฆ โˆ’ 3

9.

4๐‘ง๐‘ง 2 + 9 = โˆ’4๐‘ง๐‘ง

10. On the line below each graph, state whether the discriminant of each quadratic equation is positive, negative, or equal to zero. Then, identify which graph matches the discriminants below. Graph 1

Graph 2

_____________________

Discriminant A: (โˆ’2)2 โˆ’ 4(1)(2) Graph: ______

Lesson 15: Date:

Graph 3

______________________

_______________________

Discriminant B: (โˆ’4)2 โˆ’ 4(โˆ’1)(โˆ’4)

Discriminant C: (โˆ’4)2 โˆ’ 4(1)(0)

Graph: ______

Graph: ______

Graph 4

______________________

Discriminant D: (โˆ’8)2 โˆ’ 4(โˆ’1)(โˆ’13) Graph: ______

Using the Quadratic Formula 11/19/14

ยฉ 2014 Common Core, Inc. Some rights reserved. commoncore.org

S.80 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Lesson 15

NYS COMMON CORE MATHEMATICS CURRICULUM

M4

ALGEBRA I

Lesson Summary You can use the sign of the discriminant, ๐‘๐‘ 2 โˆ’ 4๐‘Ž๐‘Ž๐‘Ž๐‘Ž, to determine the number of real solutions to a quadratic equation in the form ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ 2 + ๐‘๐‘๐‘๐‘ + ๐‘๐‘ = 0, where ๐‘Ž๐‘Ž โ‰  0. If the equation has a positive discriminant, there are two real solutions. A negative discriminant yields no real solutions, and a discriminant equal to zero yields only one real solution.

Problem Set Without solving, determine the number of real solutions for each quadratic equation. 1. 2. 3. 4.

๐‘๐‘ 2 โˆ’ 4๐‘๐‘ + 3 = 0

2๐‘›๐‘›2 + 7 = โˆ’4๐‘›๐‘› + 5

๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฅ๐‘ฅ 2 = 5 + 2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ 2 4๐‘ž๐‘ž + 7 = ๐‘ž๐‘ž 2 โˆ’ 5๐‘ž๐‘ž + 1

Based on the graph of each quadratic function, ๐‘ฆ๐‘ฆ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ), determine the number of real solutions for each corresponding quadratic equation, ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 0. 5.

6.

7.

8.

Lesson 15: Date:

Using the Quadratic Formula 11/19/14

ยฉ 2014 Common Core, Inc. Some rights reserved. commoncore.org

S.81 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.