Supporting Information for
Li+ Local Structure in Hydrofluoroether Diluted LiGlyme Solvate Ionic Liquid Soshi Saitoa, Hikari Watanabea, Kazuhide Uenob, Toshihiko Mandaic, Shiro Sekid, Seiji Tsuzukie, Yasuo Kamedaf, Kaoru Dokkoc, Masayoshi Watanabec, Yasuhiro Umebayashia*
a
Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, 2-no-cho, Nishi-ku, Niigata City, 950-2181, Japan
b
Graduate School of Medicine, Yamaguchi University, 2-16-1 Tokiwadai, Ube City, Yamaguchi 7558611, Japan c
Department of Chemistry and Biotechnology, Yokohama National University,79-5 Tokiwadai, Hodogaya-ku, Yokohama City, Kanagawa 240-8501, Japan
d
Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-6-1 Nagasaka, Yokosuka City, Kanagawa 240-0196, Japan
e
Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
f
Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata City, Yamagata 990-8560, Japan CORRESPONDING AUTHOR FOOTNOTE: To whom correspondence should be addressed. Telephone/Fax: +81-25-262-6265. E-mail:
[email protected] 1
Figure S1. Observed (a) and theoretical (b) Raman spectra of the neat HFE and those (c) for neat and the HFE diluted [Li(G4)][TFSA] solvate ionic liquid at the frequency range of 200 – 1600 cm–1 at 298 K. Theoretical Raman spectra was evaluated at the optimized geometry at the B3LYP/6-311+G(d,p) level of theory. The optimized geometry is shown in Figure S1(b) as the inset.
2
Figure S2. (Upper panel) Typical curve fitting analysis of Raman bands ascribable to the TFSA anion in neat and the HFE diluted [Li(G4)][TFSA] solvate ionic liquid. Here, the results for neat [Li(G4)][TFS] are shown. (Lower one) Theoretical Raman bands ascribable to the TFSA anions of the CIP , the SSIP (Fig. 5a and 5b in Ref. 32, respectively), and the cis and trans conformers of free anion75 in the gas phase at the B3LYP/6-311+G(d,p) level of theory.
3
Figure S3. X-ray structure factors SHEXTS(Q) at the Q range of 0 – 20 Å–1 (a) and radial distribution functions as the form of r2{GHEXTS(r) – 1} at the r range of 0 – 15 Å (b) for neat and the HFE diluted [Li(G4)][TFSA] solvate ionic liquid at 298 K. The red lines are the corresponding MD derived ones. The relative deviations for the density were 2.1, 1.9, 2.1, 1.7 and 2.0 %, respectively.
4
Figure S4. Atomic partial charges for glymes. Ab initio (black), MD employed (red), and the OPLS-AA (blue), respectively.
5
Figure S5. Li – X (X = C, H, N, O, F and S) atom – atom pair correlation functions for neat and the HFE diluted [Li(G4)][TFSA] solvate ionic liquid. (a) X = C, H and O in G4, (b) X = C, N, O, F and S in TFSA anion and (c) X = C, H, O and F in the HFE, respectively.
Figure S6. Potential mean force for the Li – N (TFSA) pair correlation in a neat [Li(G4)][TFSA] solvate ionic liquid. 6
Figure S7. Atom types of the HFE and glymes.
7
Table S1. Cartesian coordinates and selected intra-molecular coordinates of the rigid model HFE. Cartesian coordinates X
Y
Z
C
-3.0194
0.1419
-0.6192
H
-3.7593
-0.6233
-0.7851
F
-3.3775
0.8952
0.425
C
-1.6525
-0.464
-0.3483
F
-1.344
-1.2284
-1.4012
C
-0.5691
0.5627
-0.1073
O
0.62
-0.1577
0.1249
H
-0.4708
1.1905
-0.9799
C
1.7251
0.5493
0.3648
C
2.9163
-0.3652
0.5938
F
2.0137
1.3691
-0.6515
H
3.8036
0.2157
0.7867
F
3.1025
-1.1183
-0.4867
H
-0.8276
1.1603
0.7537
F
-1.7796
-1.2654
0.7145
F
-2.9411
0.9327
-1.6936
F
1.5832
1.3321
1.4398
F
2.6661
-1.1558
1.6339
Intra-molecular coordinates bond
r/Å
torsion
θ / deg.
C-H
1.079
H-C-C-C
178.0 60.4
C-C
1.517
H-C-C-O
180.0
C-O
1.372
H-C-C-F
179.2 58.4
C-F
1.335
H-C-O-C
61.2
angle
θ / deg.
C-C-C-O
H-C-H
110.2
C-C-C-F
180.0 58.9
H-C-C
110.1
C-C-O-C
180.0
H-C-O
110.7
C-O-C-F
59.1
H-C-F
109.6
O-C-C-F
178.2 59.5
C-C-C
113.7
F-C-C-F
63.3
C-C-O
108.7
C-C-F
108.8
C-O-C
117.2
O-C-F
111.5
F-C-F
107.7
8
Table S2. Atomic partial charges and the OPLS-AA non-bonded parameters for the HFE. atom HC CT C1 OSt F
0.281
-0.189
Partial atomic charges ab initio 0.129 0.099 0.110 0.169 0.254 0.304 0.097 -0.195 -0.151 -0.159 -0.176
MD 0.080 0.270 0.050 -0.170 -0.160
Non-bonded parameters σ/Å ε / kcal mol-1 2.500 0.030 3.500 0.066 3.500 0.066 2.900 0.140 2.950 0.053
Table S3. Atomic partial charges and the OPLS-AA non-bonded parameters for glymes G1 atom HC H1 CT C1 OSt
Partial atomic charges ab initio 0.002 0.042 0.012 0.013 0.152 0.199 -0.422
MD 0.03 0.06 0.10 0.11 -0.42
Non-bonded parameters σ/Å ε / kcal mol-1 2.500 0.030 3.500 0.066 3.500 0.066 3.500 0.066 2.900 0.140
G2 atom HC H1 CT C1 OSt OSc
Partial atomic charges ab initio -0.003 0.046 -0.023 0.004 0.163 0.242 0.329 -0.452 -0.569
MD 0.03 0.06 0.11 0.15 -0.45 -0.58
Non-bonded parameters σ/Å ε / kcal mol-1 2.500 0.030 2.500 0.030 3.500 0.066 3.500 0.066 2.900 0.140 2.900 0.140
G3 atom HC H1 CT C1 C2 OSt OSm
Partial atomic charges ab initio -0.001 0.049 0.003 -0.024 -0.028 0.152 0.254 0.322 0.359 -0.448 -0.587
G4 atom HC H1 CT C1 C2 OSt OSm OSc
-0.003
MD 0.03 0.06 0.11 0.15 0.18 -0.45 -0.59
Partial atomic charges ab initio -0.003 0.049 -0.022 -0.036 -0.038 0.157 0.282 0.307 0.399 0.381 -0.456 -0.600 -0.631
MD 0.03 0.06 0.11 0.15 0.2 -0.46 -0.6 -0.64
9
Non-bonded parameters σ/Å ε / kcal mol-1 2.500 0.030 2.500 0.030 3.500 0.066 3.500 0.066 3.500 0.066 2.900 0.140 2.900 0.140
Non-bonded parameters σ/Å ε / kcal mol-1 2.500 0.030 2.500 0.030 3.500 0.066 3.500 0.066 3.500 0.066 2.900 0.140 2.900 0.140 2.900 0.140