Li Local Structure in Hydrofluoroether Diluted Li- Glyme Solvate Ionic ...

Report 12 Downloads 49 Views
Supporting Information for

Li+ Local Structure in Hydrofluoroether Diluted LiGlyme Solvate Ionic Liquid Soshi Saitoa, Hikari Watanabea, Kazuhide Uenob, Toshihiko Mandaic, Shiro Sekid, Seiji Tsuzukie, Yasuo Kamedaf, Kaoru Dokkoc, Masayoshi Watanabec, Yasuhiro Umebayashia*

a

Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, 2-no-cho, Nishi-ku, Niigata City, 950-2181, Japan

b

Graduate School of Medicine, Yamaguchi University, 2-16-1 Tokiwadai, Ube City, Yamaguchi 7558611, Japan c

Department of Chemistry and Biotechnology, Yokohama National University,79-5 Tokiwadai, Hodogaya-ku, Yokohama City, Kanagawa 240-8501, Japan

d

Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-6-1 Nagasaka, Yokosuka City, Kanagawa 240-0196, Japan

e

Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

f

Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata City, Yamagata 990-8560, Japan CORRESPONDING AUTHOR FOOTNOTE: To whom correspondence should be addressed. Telephone/Fax: +81-25-262-6265. E-mail: [email protected]

1

Figure S1. Observed (a) and theoretical (b) Raman spectra of the neat HFE and those (c) for neat and the HFE diluted [Li(G4)][TFSA] solvate ionic liquid at the frequency range of 200 – 1600 cm–1 at 298 K. Theoretical Raman spectra was evaluated at the optimized geometry at the B3LYP/6-311+G(d,p) level of theory. The optimized geometry is shown in Figure S1(b) as the inset.

2

Figure S2. (Upper panel) Typical curve fitting analysis of Raman bands ascribable to the TFSA anion in neat and the HFE diluted [Li(G4)][TFSA] solvate ionic liquid. Here, the results for neat [Li(G4)][TFS] are shown. (Lower one) Theoretical Raman bands ascribable to the TFSA anions of the CIP , the SSIP (Fig. 5a and 5b in Ref. 32, respectively), and the cis and trans conformers of free anion75 in the gas phase at the B3LYP/6-311+G(d,p) level of theory.

3

Figure S3. X-ray structure factors SHEXTS(Q) at the Q range of 0 – 20 Å–1 (a) and radial distribution functions as the form of r2{GHEXTS(r) – 1} at the r range of 0 – 15 Å (b) for neat and the HFE diluted [Li(G4)][TFSA] solvate ionic liquid at 298 K. The red lines are the corresponding MD derived ones. The relative deviations for the density were 2.1, 1.9, 2.1, 1.7 and 2.0 %, respectively.

4

Figure S4. Atomic partial charges for glymes. Ab initio (black), MD employed (red), and the OPLS-AA (blue), respectively.

5

Figure S5. Li – X (X = C, H, N, O, F and S) atom – atom pair correlation functions for neat and the HFE diluted [Li(G4)][TFSA] solvate ionic liquid. (a) X = C, H and O in G4, (b) X = C, N, O, F and S in TFSA anion and (c) X = C, H, O and F in the HFE, respectively.

Figure S6. Potential mean force for the Li – N (TFSA) pair correlation in a neat [Li(G4)][TFSA] solvate ionic liquid. 6

Figure S7. Atom types of the HFE and glymes.

7

Table S1. Cartesian coordinates and selected intra-molecular coordinates of the rigid model HFE. Cartesian coordinates X

Y

Z

C

-3.0194

0.1419

-0.6192

H

-3.7593

-0.6233

-0.7851

F

-3.3775

0.8952

0.425

C

-1.6525

-0.464

-0.3483

F

-1.344

-1.2284

-1.4012

C

-0.5691

0.5627

-0.1073

O

0.62

-0.1577

0.1249

H

-0.4708

1.1905

-0.9799

C

1.7251

0.5493

0.3648

C

2.9163

-0.3652

0.5938

F

2.0137

1.3691

-0.6515

H

3.8036

0.2157

0.7867

F

3.1025

-1.1183

-0.4867

H

-0.8276

1.1603

0.7537

F

-1.7796

-1.2654

0.7145

F

-2.9411

0.9327

-1.6936

F

1.5832

1.3321

1.4398

F

2.6661

-1.1558

1.6339

Intra-molecular coordinates bond

r/Å

torsion

θ / deg.

C-H

1.079

H-C-C-C

178.0 60.4

C-C

1.517

H-C-C-O

180.0

C-O

1.372

H-C-C-F

179.2 58.4

C-F

1.335

H-C-O-C

61.2

angle

θ / deg.

C-C-C-O

H-C-H

110.2

C-C-C-F

180.0 58.9

H-C-C

110.1

C-C-O-C

180.0

H-C-O

110.7

C-O-C-F

59.1

H-C-F

109.6

O-C-C-F

178.2 59.5

C-C-C

113.7

F-C-C-F

63.3

C-C-O

108.7

C-C-F

108.8

C-O-C

117.2

O-C-F

111.5

F-C-F

107.7

8

Table S2. Atomic partial charges and the OPLS-AA non-bonded parameters for the HFE. atom HC CT C1 OSt F

0.281

-0.189

Partial atomic charges ab initio 0.129 0.099 0.110 0.169 0.254 0.304 0.097 -0.195 -0.151 -0.159 -0.176

MD 0.080 0.270 0.050 -0.170 -0.160

Non-bonded parameters σ/Å ε / kcal mol-1 2.500 0.030 3.500 0.066 3.500 0.066 2.900 0.140 2.950 0.053

Table S3. Atomic partial charges and the OPLS-AA non-bonded parameters for glymes G1 atom HC H1 CT C1 OSt

Partial atomic charges ab initio 0.002 0.042 0.012 0.013 0.152 0.199 -0.422

MD 0.03 0.06 0.10 0.11 -0.42

Non-bonded parameters σ/Å ε / kcal mol-1 2.500 0.030 3.500 0.066 3.500 0.066 3.500 0.066 2.900 0.140

G2 atom HC H1 CT C1 OSt OSc

Partial atomic charges ab initio -0.003 0.046 -0.023 0.004 0.163 0.242 0.329 -0.452 -0.569

MD 0.03 0.06 0.11 0.15 -0.45 -0.58

Non-bonded parameters σ/Å ε / kcal mol-1 2.500 0.030 2.500 0.030 3.500 0.066 3.500 0.066 2.900 0.140 2.900 0.140

G3 atom HC H1 CT C1 C2 OSt OSm

Partial atomic charges ab initio -0.001 0.049 0.003 -0.024 -0.028 0.152 0.254 0.322 0.359 -0.448 -0.587

G4 atom HC H1 CT C1 C2 OSt OSm OSc

-0.003

MD 0.03 0.06 0.11 0.15 0.18 -0.45 -0.59

Partial atomic charges ab initio -0.003 0.049 -0.022 -0.036 -0.038 0.157 0.282 0.307 0.399 0.381 -0.456 -0.600 -0.631

MD 0.03 0.06 0.11 0.15 0.2 -0.46 -0.6 -0.64

9

Non-bonded parameters σ/Å ε / kcal mol-1 2.500 0.030 2.500 0.030 3.500 0.066 3.500 0.066 3.500 0.066 2.900 0.140 2.900 0.140

Non-bonded parameters σ/Å ε / kcal mol-1 2.500 0.030 2.500 0.030 3.500 0.066 3.500 0.066 3.500 0.066 2.900 0.140 2.900 0.140 2.900 0.140