Life Cycle Costs

Report 4 Downloads 28 Views
Graduate   Category:  Engineering  and  Technology   Degree  Level:  Masters   Abstract  ID#  295

 

Data Driven Life Cycle Cost Analysis

Tarun Reddy Aleti, Ralf Birken, Ming L. Wang (Northeastern University) Correlation of Physical Features with Pavement Condition Index

Life Cycle Costs is a good indicator of effectiveness of a Pavement Management System Here we focus on the maintenance and repair strategies, and future repair budgeting estimates. We Life  Cycle   calculate life cycle costs by Cost   taking advantage of Analysis   preventive repairs that could be recommended every year using VOTERS pavement inspection data. Later we 1.  Pavement   Condi9on  Index  

4.  Budge9ng,   Future  Repair   and  Cost   Es9mates    

2.  Pavement   Deteriora9on   Modeling  

3.   Maintenance   and  Repair   Strategies  

compare our results to life cycle costs of the

0.900  

1.000  

1.100  

1.200  

1.300  

1.400  

1.500  

Mean  Texture  Depth  (mm)  

-­‐0.843  

2  

Interna9onal  Roughness  Index    

IRI  

-­‐0.886  

3  

Standard  Devia9on  of     Road  Profile     Total  Crack  Index    

SDRP  

-­‐0.846  

TCI  

VOTERS  PHYSICAL   FEATURE  DISTRESSES  

Alligator   Cracking  (m2)  

Block   Cracking  (m2)    

Patching  (m2)  

Repair  Type:  Crack  Seal   Repair  Cost  =  1  $/T  *  100T  =  $100  

Distress  Density   Severity   Distress  Density   Severity   Distress  Density   Severity   Distress  Density   Severity   Distress  Density   Severity  

3  

PrevenHve   1.  Spray  InjecHon   Patching   2.  Micro  surfacing  

2  

RouHne   1.  Spot  Leveling  

5  

RehabilitaHon   1.  Thin  Hot  Mix   Overlay  <  2”  

3   3   2  

PrevenHve   1.  Thin  Hot  Mix   Overlay  <  1.5”   PrevenHve   1.  Rout  and  Seal   2.  Clean  and  Seal  

2  

IniHal   Case     PCI  

Same Road After 5 Years  

95  

I   II  

-­‐0.805  

ClassificaHon  Table  

SDRP(mm)  

1  

80  

Algorithm for Pavement Repair and Maintenance Strategies using VOTERS Physical Features and Technology

MTD  (mm)  

65  

PCI  

0   0.800  

MTD  

Severity  

72  

0  

Mean  Texture  Depth    

VOTERS Physical Features In. a study done by Shah et al. 1996 under US Army Corps Engineers, shortlisted 7 most important pavement distresses out of the 19 types of distresses. The shortlisted distresses are Alligator Cracking, Patching/Potholes, Raveling, Rutting, Corrugations and Block Cracking. VOTERS estimates these distresses using its physical features Mean Texture Depth, International Roughness Index, Standard Deviation of Road Profile and Total Crack Index.

20  

1  

Distress  Density  

80  

90  

20  

I  

5  

State  of  Art  

VOTERS  

1  

2  

3  

4  

5  

Total     Costs  

State  of  Art  

0$  

0$  

0$  

0$  

2250$  

2632$  

VOTERS  

125$  

125$  

125$   125$   975$  

1671$  

State  of  Art  

0$  

0$  

VOTERS  

200$  

200$  

State  of  Art  

0$  

0$  

State  of  Art   VOTERS  

Repair  Type:  Thin  Overlay  <  1.5”   Repair  Cost  =  0.9  $/T2*2500T2  =  $2250    

4  

Years  

Type  

VOTERS   II  

3  

Year    

2250$   125$   0$  

0$  

0$  

4375$  

5118$  

200$   200$   975$  

1989$  

0$  

0$  

4375$  

5118$  

125$   125$   125$  

2802$  

0$  

0$   0$  

7000$  

8189$  

2250$   2005$   200$   200$   200$  

3133$  

Case I: MicroPaver Deterioration, Case II: Expected Deterioration  

Life Cycle Costs Analysis MOST  DOMINANT  STRATEGY   REHABILITAITON   THIN  HOT  MIX  OVERLAY  <  2”  

 

40  

CorrelaHon  with    PCI  

IRI   (mm/km)  

95  

40  

AbbreviaHon  

state of the art strategy of doing repairs once in 3 to 5 years.

88  

95  

60  

60  

No.   VOTERS  Physical  Feature  

4  

95  

80  

80  



95   95  

100  

RouHne   1.  Pothole  Patching  

Results from Algorithm Every distress is important in identifying the appropriate repair strategy for a pavement. Our decision tree algorithm helps in identifying the potential cracks, raveling, potholes roughness conditions and doing corresponding preventive repair for them instead of doing NO REPAIR. The advantages of such preventive repairs are demonstrated below, where we compare current state of the art of doing repair once in 5 years and VOTERS way of doing every year.

Life Cycle Costs is sum of the Agency Costs (Repair and Maintenance Costs) and User Costs (Vehicle Operating Costs – Tire Costs, Fuel Costs & Vehicle Repair Costs). We considered 17 Streets from Brockton and calculated the life cycle costs which 3 different scenarios in a time period of 10 years with constant inflation of 4%. We assumed a Maximum Rehabilitation Budget of $15,000 per year and Maximum Preventive Budget of $2,500 per year. We can see from the life cycle costs below that by doing preventive repairs every year even on a very good pavement, we save a lot of money in the medium term, while at the same time the pavement condition can be maintained at a very high level. Repair  Every  Year  

Repair  every  3  years  

Repair  every  5  years  

200   180   160   140   120   100   80   60   40   20   0  

90  

Average  PCI  a]er  10  years  

INTRODUCTION

Each of the VOTERS Physical features are highly correlated to the PCI. This results validates that these

features correctly indicate the

condition of the pavement. Also, each of these physical features can be

very useful in determining not just the dominant distress type on the road

but also appropriate pavement maintenance and repair strategies.

100  

PCI  

Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) makes collecting pavement inspection data every year a possibility. We do not need to depend on inspection data collected only once every 5 years to develop our Pavement Management System (PMS). Our attempt is to develop a PMS that uses yearly updated pavement inspection data provided by the VOTERS system.

Demonstration of Advantages of Preventive Repair using frequent VOTERS data

Life  Cycle  Costs  (x$1000)  

ABSTRACT

82  

80  

65  

70   60  

52  

50   40   30   20   10  

0  

2  

4  

6  

Years  

8  

10  

12  

0   Repair  Every  Year  

Repair  every  3  years  

Repair  every  5  years  

Conclusions q  VOTERS physical features can be used as a substitute for the distresses in PMS q  Each of the VOTERS Physical features are highly correlated to the Pavement Condition Index q  Developed an algorithm for calculating the appropriate repair and maintenance strategy

Repair  Suggested  is  RouHne  Maintenance.  Very   small  cracks  begin  to  appear.  Poten9al  to  form   small  potholes  during  rain  and  snow  storms  

Repair  Suggested  is  Thin  Overlay  <  1.5”.  Too   many  cracks  to  do  sealing.  But  since,  cracks  are   of  small  width  preven9ve  repair  is  suggested.  

q  Successfully demonstrated that VOTERS pavement data helps in decreasing overall life cycle costs while maintaining pavement in good condition q  With VOTERS it is possible to achieve RIGHT REPAIR in RIGHT TIME at RIGHT PLACE