Linear model - Semantic Scholar

Report 2 Downloads 151 Views
Mean Shift-based Bayesian Image Reconstruction into Visual Subspace Torbjørn Vik1 , Fabrice Heitz1 and Pierre Charbonnier2

1 Laboratoire

des Sciences de l’Image, de l’Informatique et de la Télédétection UMR-7005 CNRS/Strasbourg I University, Illkirch, France 2 Laboratoire Régional des Ponts et Chaussées Strasbourg, France

ICIP 2003 – p. 1

Plan Appearance-based modeling Linear model, Probabilistic modeling Reconstruction algorithm Example Summary

ICIP 2003 – p. 2

Appearance-based models

Statistical analysis extracts characteristic features of an object class from raw training images Applications: detection, recognition

ICIP 2003 – p. 3

Appearance-based models

Statistical analysis extracts characteristic features of an object class from raw training images Applications: detection, recognition Training Training images

Estimated model

Recognition

Class

Image to recognize

ICIP 2003 – p. 3

Visual subspace

Image with d pixels ⇐⇒ vector Rd Training images ⇐⇒ cloud of points in Rd Probabilistic modeling Dimension reduction (PCA, ICA, FA, PP,...) Model: Deterministic part (dependent on a subspace variable) and noise

ICIP 2003 – p. 4

Visual subspace: illustration

Training images

3D observation space

ICIP 2003 – p. 5

Visual subspace: illustration

PCA

3D observation space

ICIP 2003 – p. 5

Visual subspace: illustration

y  x

y = g(x) + 

ICIP 2003 – p. 5

Visual subspace: illustration

y  x

y = g(x) +  Error Deterministic relation

ICIP 2003 – p. 5

Plan Appearance-based modeling Linear model, Probabilistic modeling Reconstruction algorithm Example Summary

ICIP 2003 – p. 6

Linear model Linear model (from factor analysis):

y = Wx + µ + 

y:

observed image

W:

generation matrix

x:

subspace variable

µ:

mean image

:

pixel/observation noise

ICIP 2003 – p. 7

Linear model Linear model (from factor analysis): Training

y = Wx + µ + 

y:

observed image

W:

generation matrix

x:

subspace variable

µ:

mean image

:

pixel/observation noise

ICIP 2003 – p. 7

Linear model Linear model (from factor analysis):

y = Wx + µ + 

y:

observed image

W:

generation matrix

x:

subspace variable

µ:

mean image

:

pixel/observation noise

Random variables

p(x)

p()

ICIP 2003 – p. 7

Linear model Linear model (from factor analysis):

y = Wx + µ + 

y:

observed image

W:

generation matrix

x:

subspace variable

µ:

mean image

:

pixel/observation noise

ICIP 2003 – p. 7

Linear model Linear model (from factor analysis):

y = Wx + µ + 

y:

observed image

W:

generation matrix

x:

subspace variable

µ:

mean image

:

pixel/observation noise

?

Reconstruction problem

ICIP 2003 – p. 7

Linear model Linear model (from factor analysis):

y = Wx + µ + 

y:

observed image

W:

generation matrix

x:

subspace variable

µ:

mean image

:

pixel/observation noise

?

Reconstruction problem ˆ = arg maxx p(x|y) MAP estimation: x ICIP 2003 – p. 7

Probabilistic modeling: standard

p(x) = constant: uniform p() = N (0, σ 2 ), Gaussian ˆ GM L =⇒ standard ML/LS estimate: x

ICIP 2003 – p. 8

Probabilistic modeling: standard

p(x) = constant: uniform p() = N (0, σ 2 ), Gaussian ˆ GM L =⇒ standard ML/LS estimate: x y

xGT Class distribution

ˆ GM L x ICIP 2003 – p. 8

Probabilistic modeling: robust noise

p(x) = constant: uniform Pd 1 p() ∝ exp(− 2 i=1 ρ(i ))

ˆ RM L =⇒ iterated reweighted LS (IRLS): x

ICIP 2003 – p. 9

Probabilistic modeling: robust noise

p(x) = constant: uniform Pd 1 p() ∝ exp(− 2 i=1 ρ(i ))

ˆ RM L =⇒ iterated reweighted LS (IRLS): x y

xGT ˆ RM L x p(x)

ˆ GM L x ICIP 2003 – p. 9

Probabilistic modeling: proposed model 1 N

PN

Γi (x), Γi (x) = N (xi , Σ): Non-Gaussian Pd 1 p() ∝ exp(− 2 i=1 ρ(i )) p(x) =

i=1

ˆ RM AP ? =⇒ how to find x

y

xGT p(x)

ˆ RM AP x

ˆ RM L x

ˆ GM L x ICIP 2003 – p. 10

Plan Appearance-based modeling Linear model, Probabilistic modeling Reconstruction algorithm Example Summary

ICIP 2003 – p. 11

Standard Mean Shift D. Comaniciu and P. Meer, 2002 Gradient ascent: ∇p(x) = p(x)Σ−1 ms(x) Mean Shift : ms(x) = Adaptive Step-size

"P

N i=1 Γi (x)xi PN i=1 Γi (x)

−x

#

ICIP 2003 – p. 12

Standard Mean Shift D. Comaniciu and P. Meer, 2002 Gradient ascent:

Mean Shift :

∇p(x) = p(x)Σ−1 ms(x) | {z } step size

ms(x) = Adaptive Step-size

"P

N i=1 Γi (x)xi PN i=1 Γi (x)

−x

#

ICIP 2003 – p. 12

Modified Mean Shift for visual subspace

p(x): Kernel density function p() = N (0, σ 2 ), Gaussian Gradient ascent: ∇p(x|y) = p(x|y)Σ−1 mms(x) mms(x) : Modified Mean Shift : # "P N i=1 ci Γi (x)µi −x mms(x) = PN i=1 ci Γi (x) ICIP 2003 – p. 13

Half-quadratic theory

Noise: p() ∝

exp(− 12

Pd

i=1

ρ(i ))

Rewrite by introducing an auxiliary variable b: p() = max p˜(, b) b



1 T p˜(, b) ∝ exp − ( B + Ξ(b)) 2



B = diag(b)  = y − µ − Wx

ICIP 2003 – p. 14

Half-quadratic theory

Noise: p() ∝

exp(− 12

Pd

i=1

ρ(i ))

Rewrite by introducing an auxiliary variable b: p() = max p˜(, b) b

1 p˜(, b) ∝ exp − ( | T{z B} 2

b fixed⇒mms

+Ξ(b))

!

B = diag(b)

 = y − µ − Wx

ICIP 2003 – p. 14

Half-quadratic theory

Noise: p() ∝

exp(− 12

Pd

i=1

ρ(i ))

Rewrite by introducing an auxiliary variable b: p() = max p˜(, b) b



1  p˜(, b) ∝ exp − 2

B = diag(b)



(T B + Ξ(b))  | {z }

x fixed⇒arg maxb analytic

 = y − µ − Wx ICIP 2003 – p. 14

Complete algorithm

Hypotheses: p(x): Kernel density function Pd 1 p() ∝ exp(− 2 i=1 ρ(i ))

Algorithm sketch: repeat repeat x(k+1) ← x(k) + mms(x(k) ) until inner loop convergence ρ0 (j ) bj ← j until outer loop convergence

ICIP 2003 – p. 15

Plan Appearance-based modeling Linear model, Probabilistic modeling Reconstruction algorithm Example Summary

ICIP 2003 – p. 16

Example COIL

Var 3

xGT Var 2 Var 1

y

ICIP 2003 – p. 17

Example COIL

3D

x ˆ GM L

x ˆ RM L

xGT x ˆ RM AP

x ˆ RM L

x ˆ GM L

x ˆ RM AP

ICIP 2003 – p. 18

Example COIL

All images Euclidian distance in visual subspace from ground truth Average results:

µd ± σ d med ± M AD

GML 34.1 ± 6.8 35.8 ± 4.1

RML 15.7 ± 19.0 7.1 ± 3.1

RMAP 11.9 ± 14.8 4.4 ± 2.5

ICIP 2003 – p. 19

Summary

Contributions: =⇒ A general probabilistic model for visual appearance modeling was presented: robust noise and non-parametric subspace distribution =⇒ An algorithm for MAP reconstruction of an observed image, based on the Mean Shift and HQ-theory

ICIP 2003 – p. 20

Mean Shift: the term

ms(x) =

"P

N i=1 Γi (x)xi PN i=1 Γi (x)

x1

x

−x

#

xN

ICIP 2003 – p. 21

Linear model Decompose an image into a linear basis

+x1

=

y

+...

µ

w1

. . . + xd

+

w



ICIP 2003 – p. 22

Appearance-based models: application

Object/face recognition Separate training and recognition Training Training images

Estimated model

Recognition

Class

Image to recognize

ICIP 2003 – p. 23

Appearance-based models: recognition

Image reconstruction: given an observation y, find x This x is then classified in subspace Standard estimation: Least squares (LS) y

xGT Class distribution

ˆ GM L x ICIP 2003 – p. 24

Estimation of x Maximum likelihood (ML): ˆ = arg max p(y|x) x x

Maximum a postieriori (MAP): 1 ˆ = arg max p(x|y) = arg max x p(y|x)p(x) x x p(y)

ICIP 2003 – p. 25

Visual subspace: notion

g(x)

ICIP 2003 – p. 26

Visual subspace: notion

g(x)

ICIP 2003 – p. 26

Visual subspace: notion

y = g(x) +  g(x)

ICIP 2003 – p. 26

Visual subspace: notion

y = g(x) +  g(x)

Error Deterministic relation

ICIP 2003 – p. 26

References [CM02] D. Comaniciu and P. Meer. Mean Shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Machine Intell., 24(5):603–619, May 2002.

ICIP 2003 – p. 27