LT1457 Dual, Precision JFET Input Op Amp
U
DESCRIPTION
FEATURES ■ ■ ■ ■ ■ ■ ■ ■
Handles 10,000pF Capacitive Load 450µV Max Offset Voltage 1200µV Max Offset Voltage in S8 Package 50pA Bias Current at 70°C 13nV/√Hz Voltage Noise 4V/µs Slew Rate 4µV/°C Drift 130dB Channel Separation
U APPLICATIONS ■ ■ ■ ■
Sample-and-Hold (Drives Large Hold Capacitors) A/D and D/A Converters Photodiode Amplifiers Voltage-to-Frequency Converters
The LT1457 is a dual, JFET input op amp optimized for handling large capacitive loads in combination with precision performance. Precision specifications include 220µV offset voltage in plastic and surface mount packages. At 70°C input bias current is 50pA, input offset current is 20pA. Channel separation is 130dB. Other dual JFET input op amps from Linear Technology include the LT1057, which is three times faster than the LT1457 but at the expense of significantly lower capacitive load handling capability; and the LT1113 with 4.5nV/√Hz voltage noise.
www.BDTIC.com/LINEAR U W
TYPICAL PERFORMANCE CHARACTERISTICS Capacitive Load Handling
Input Offset Voltage Distribution S8 Package 21
100
18 PERCENT OF UNITS
OVERSHOOT (%)
80
VS = ±15V TA = 25°C AV = +1
60
40
15
VS = ±15V TA = 25°C
400 DUALS (800 OP AMPS) TESTED FROM 3 RUNS
12 9 6
20 3 0 0.1
1 10 CAPACITIVE LOAD (nF)
100 LT11457• TA01
0 –1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 INPUT OFFSET VOLTAGE (mV) LT1457 • TA02
1
LT1457 W
U
U
W W
W
Supply Voltage ...................................................... ±20V Differential Input Voltage ....................................... ±40V Input Voltage .......................... Equal to Supply Voltages Output Short-Circuit Duration .......................... Indefinite Operating Temperature Range ................ – 40°C to 85°C Storage Temperature Range ................. – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C
U
ABSOLUTE MAXIMUM RATINGS
PACKAGE/ORDER INFORMATION ORDER PART NUMBER
TOP VIEW +
OUT A
1
8
V
–IN A
2
7
OUT B
+IN A
3
6
–IN B
V–
4
5
+IN B
LT1457ACN8 LT1457CN8
A B
N8 PACKAGE 8-LEAD PLASTIC DIP TJMAX = 115°C, θJA = 130°C/ W
TOP VIEW +IN A
1
V–
2
+IN B
3
–IN B
A B
4
8
–IN A
7
OUT A
6
V+
5
OUT B
LT1457S8
S8 PART MARKING
S8 PACKAGE 8-LEAD PLASTIC SOIC
1457
NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE 8-LEAD DIP PIN LOCATIONS. INSTEAD, IT FOLLOWS THE INDUSTRY STANDARD LT1013DS8 SO PACKAGE CONFIGURATION.
TJMAX = 130°C, θJA = 190°C/ W
Consult factory for Industrial and Military grade parts.
www.BDTIC.com/LINEAR
ELECTRICAL CHARACTERISTICS
VS = ±15V, TA = 25°C,VCM = 0V unless otherwise noted. (Note 1)
SYMBOL PARAMETER VOS Input Offset Voltage
CONDITIONS LT1457AC/C LT1457S8
IOS
Input Offset Current
Fully Warmed Up
IB
Input Bias Current Input Resistance-Differential -Common-Mode
MIN
LT1457AC TYP MAX 150 450
LT1457C/LT1457S8 MIN TYP MAX 200 800 220 1200
UNITS µV µV
3
40
Fully Warmed Up
±5
±50
VCM = –11V to 8V VCM = 8V to 11V
1012 1012 1011
1012 1012 1011
Ω Ω Ω
4
4
pF
Input Capacitance
4
50
pA
±7
±75
pA
en
Input Noise Voltage
0.1Hz to 10Hz
2.0
2.1
µVP–P
en
Input Noise Voltage Density
fO = 10Hz fO = 1kHz (Note 2)
26 13
22
28 14
24
nV/√Hz nV/√Hz
1.5
4
1.8
6
fA/√Hz
in
Input Noise Current Density
fO = 10Hz, 1kHz (Note 3)
AVOL
Large-Signal Voltage Gain
VO = ±10V, RL = 2k VO = ±10V, RL = 1k
Input Voltage Range
150 120
350 250
100 80
300 220
±10.5
14.3 –11.5
±10.5
14.3 –11.5
V/mV V/mV V V
CMRR
Common-Mode Rejection Ratio
VCM = ±10.5V
86
100
82
98
dB
PSRR
Power Supply Rejection Ratio
VS = ±4.5V to ±18V
88
103
86
102
dB
VOUT
Output Voltage Swing
RL = 2k
±12
±13
±12
±13
SR
Slew Rate
2
4
2
4
2
V V/µs
LT1457
ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER
CONDITIONS
GBW
Gain-Bandwidth Product
(Note 5)
IS
Supply Current Per Amplifier
MIN 1.0
ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER Input Offset Voltage VOS
1.7
LT1457C/LT1457S8 MIN TYP MAX 1.0
3.0
1.8
132
MIN ● ● ●
Warmed Up, TA = 70°C Warmed Up, TA = 70°C VO = ±10V, RL = 2k VCM = ±10.4V VS = ±4.5V to ±18V RL = 2k
● ● ● ●
70 85 87 ±12
IOS IB AVOL CMRR PSRR VOUT IS
Average Temperature Coefficient of Input Offset Voltage Input Offset Current Input Bias Current Large-Signal Voltage Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing Supply Current Per Amplifier
mA dB
3
10
18 ±50 220 98 102 ±12.8
150 ±250
LT1457C/LT1457S8 MIN TYP MAX 330 1500 400 1900 4 16
50 80 84 ±12
20 ±60 200 96 100 ±12.8
3.2
250 ±350
3.2
1.7
www.BDTIC.com/LINEAR
SYMBOL PARAMETER Input Offset Voltage VOS
MHz 3.0
130
LT1457AC TYP MAX 250 900
●
TA = 70°C
ELECTRICAL CHARACTERISTICS
1.7
UNITS
VS = ±15V, VCM = 0V, 0°C ≤ TA ≤ 70°C, unless otherwise noted.
CONDITIONS LT1457AC/C LT1457S8
Average Temperature Coefficient of Input Offset Voltage (Note 4) Input Offset Current Input Bias Current Large-Signal Voltage Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing Supply Current Per Amplifier
LT1457AC TYP MAX 1.8
DC to 5kHz, VIN = ±10V
Channel Separation
IOS IB AVOL CMRR PSRR VOUT IS
VS = ±15V, TA = 25°C,VCM = 0V unless otherwise noted. (Note 1)
1.7
UNITS µV µV µV/°C pA pA V/mV dB dB V mA mA
VS = ±15V, VCM = 0V, –40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 6)
CONDITIONS LT1457AC/C LT1457S8
MIN ● ● ●
Warmed Up, TA = 85°C Warmed Up, TA = 85°C VO = ±10V, RL = 2k VCM = ±10.4V VS = ±5V to ±17V RL = 2k TA = – 40°C TA = 85°C
The ● denotes the specifications which apply over the full operating temperature range. Note 1: Typical parameters are defined as the 60% yield of distributions of individual amplifiers; i.e., out of 100 LT1457s (200 op amps) typically 120 will be better than the indicated specification. Note 2: This parameter is tested on a sample basis only. Note 3: Current noise is calculated from the formula: in = (2qIb)1/2, where q = 1.6 x 10 –19 coulomb. The noise of source resistors up to 1GΩ swamps the contribution of current noise.
● ● ● ●
40 84 86 ±12
LT1457AC TYP MAX 350 1100 3
10
0.1 ± 0.2 120 97 100 ±12.7
0.5 ± 0.7
LT1457C/LT1457S8 MIN TYP MAX 400 1800 500 2300 4 16
30 80 83 ±12
0.1 ±0.2 110 95 98 ±12.6
3.8 1.7
0.6 ±0.9
3.8 1.7
UNITS µV µV µV/°C nA nA V/mV dB dB V mA mA
Note 4: This parameter is not 100% tested. Note 5: Gain-Bandwidth product is not tested. It is guaranteed by design and by inference from the slew rate measurement. Note 6: The LT1457 is not tested and not quality-assurance-sampled at – 40°C and at 85°C. These specifications are guaranteed by design, correlation, and/or inference from 0°C, 25°C, and 70°C tests.
3
LT1457 U W
TYPICAL PERFORMANCE CHARACTERISTICS Input Bias and Offset Current vs Temperature
Input Bias Current Over the Common-Mode Range
100 BIAS CURRENT 30
10 OFFSET CURRENT 0
25 50 75 AMBIENT TEMPERATURE (°C)
120 100 TA = 70°C
80 60 40 20 0 –20 –15
100
21
0
5
LT1457 • TPC03
Long Term Drift of Representative Units 50
RL = 2k
9
VOLTAGE GAIN (V/mV)
12
VS = ±15V VO = ±10V
VS = ±15V TA = 25°C
40
300
RL = 1k
100
30
3
30 20
10
0
–10 –20 –30 –40
10 –50
0 0.2 0.4 0.6 0.8 –0.8 –0.6 –0.4 –0.2 0 INPUT OFFSET VOLTAGE (mV)
–50 –25
0 25 50 TEMPERATURE (°C)
75
100
0
1
2 3 TIME (MONTHS)
4
LT1457 • TPC05
LT1457 • TPC04
Voltage Noise vs Frequency
5
LT1457 • TPC06
0.1Hz to 10Hz Noise
Channel Separation vs Frequency
100
160 VS = ±15V TA = 25°C
CHANNEL SEPARATION (dB)
VS = ±15V TA = 25°C
NOISE VOLTAGE (1µV/DIV)
70 50
30 20
140 LIMITED BY THERMAL INTERACTION AT DC = 132dB
120
10
RS = 10Ω
LIMITED BY PIN TO PIN CAPACITANCE
100
VS = ±15V TA = 25°C VIN = 20VP-P TO 5kHz RL = 2k
80
1/f CORNER = 28Hz
RS = 1k
60 3
10
30
100 300 1k FREQUENCY (Hz)
3k
10k
LT1457 • TPC07
4
1 2 3 4 TIME AFTER POWER ON (MINUTES)
www.BDTIC.com/LINEAR
15
6
RMS VOLTAGE NOISE DENSITY (nV/√Hz)
N8 PACKAGE 30
15
1000
18
60
Voltage Gain vs Temperature
900 DUALS (1800 OP AMPS) TESTED FROM 3 RUNS
S8 PACKAGE
90
LT1457 • TPC02
Input Offset Voltage Distribution N8 Package VS = ±15V TA = 25°C
120
0 –10 –5 0 5 10 COMMON-MODE INPUT VOLTAGE (V)
LT1457 • TPC01
24
VS = ±15V TA = 25°C
TA = 25°C
OFFSET VOLTAGE CHANGE (µV)
300
VS = ±15V
140
CHANGE IN OFFSET VOLTAGE (µV)
VS = ±15V VCM = 0V WARMED UP
3
PERCENT OF UNITS
Warm-Up Drift 150
160
INPUT BIAS CURRENT (pA)
INPUT BIAS AND OFFSET CURRENT (pA)
1000
0
2
4 6 TIME (SECONDS)
8
10
LT1457 • TPC08
1
10
100 1k 10k FREQUENCY (Hz)
100k
1M
LT1457 • TPC09
LT1457 U W
TYPICAL PERFORMANCE CHARACTERISTICS Common-Mode Rejection Ratio vs Frequency
Common-Mode Range vs Temperature 15
120 VS = ±15V TA = 25°C
VS = ±5V TO ±17V FOR PSRR VS = ±15V, VCM = ±10.5V FOR CMRR
60 40 20
13 12
CMRR, PSRR (dB)
80
11 ±10 –11 –12
–14 0 10
100
1k 10k 100k FREQUENCY (Hz)
1M
–25
0 25 50 TEMPERATURE (°C)
LT1457• TPC10
CMRR 100
75
90 –50
100
0 25 50 TEMPERATURE (°C)
10 SUPPLY CURRENT PER AMPLIFIER (mA)
8
50 40
TA = – 40°C
30
www.BDTIC.com/LINEAR SLEW FALL GBW
1.5
GBW (MHz)
6
2.0
4 1.0
SLEW RISE 2 –50
–25
0 25 50 TEMPERATURE (°C)
75
2
VS = ±15V
VS = ±5V 1
0 25 50 TEMPERATURE (°C)
60
PHASE
5
CL = 1000pF GAIN
0
–15 0.1
40 20 0
–5 –10
VS = ±15V TA = 25°C
CL = 1000pF –20
CL = 10pF
1.0 FREQUENCY (MHz)
100
10 LT1457 • TPC16
TA = 85°C
TA = 25°C
TA = 85°C
–20 –30
TA = – 40°C VS = ±15V
0 1 2 3 TIME FROM OUTPUT SHORT TO GROUND (MINUTES) LT1457 • TPC15
Power Supply Rejection Ratio vs Frequency 140
VS = ±15V TA = 25°C
TA = 25°C 120
24 100 18
PSRR (dB)
80
PEAK TO PEAK OUTPUT SWING (V)
100
CL = 10pF
10
75
30
PHASE MARGIN (DEG)
15
–10
Undistorted Output Swing vs Frequency
PHASE MARGIN = 80°, CL = 10pF PHASE MARGIN = 51°, CL = 1000pF
TA = 25°C
0
LT1457 • TPC14
Gain, Phase vs Frequency 20
10
– 50 –25
LT1457 • TPC18
25
20
– 40 0 –50
100
100
Short-Circuit Current vs Time (One Output Shorted to Ground)
3 2.5
75
LT1457 • TPC12
Supply Current vs Temperature
VS = ±15V
–25
LT1457 • TPC11
Slew Rate, Gain-Bandwidth Product vs Temperature
SLEW RATE (V/µs)
PSRR
VS = ±15V
–15 – 50
10M
110
–13
SHORT-CIRCUIT CURRENT (mA)
CMRR (dB)
120
14 COMMON -MODE RANGE (V)
100
VOLTAGE GAIN (dB)
Common-Mode and Power Supply Rejections vs Temperature
12
POSITIVE SUPPLY
80 60
NEGATIVE SUPPLY
40 6 20 0 10k
0 100k 1M FREQUENCY (Hz)
10M LT11457• TPC17
10
100
1k 10k 100k FREQUENCY (Hz)
1M
10M
LT1457• TPC13
5
LT1457 U W
TYPICAL PERFORMANCE CHARACTERISTICS Large-Signal Response AV = 1, CL = 100pF
Small-Signal Response AV = 1, CL = 1000pF
LT1457 TPC19
Small-Signal Response AV = 1, CL = 10,000pF
LT1457 TPC20
LT1457 TPC21
U
W
U
U
APPLICATIONS INFORMATION Phase Reversal Protection Most industry standard JFET input single, dual, and quad op amps (e.g., LF156, LF351, LF353, LF411, LF412, OP-15, OP-16, OP-215, and TL084) exhibit phase reversal at the output when the negative common-mode limit at the input is exceeded (i.e., below –12V with ±15V supplies). The photos show a ±16V sine wave input (A), the response
of an LF412A in the unity gain follower mode (B), and the response of the LT1457 (C).
www.BDTIC.com/LINEAR
The phase reversal of photo (B) can cause lock-up in servo systems. The LT1457 does not phase-reverse due to a unique phase reversal protection circuit.
LT1457 AI01
(A) ±16V Sine Wave Input
LT1457 AI02
(B) LF412A Output
All Photos 5V/Div Vertical Scale, 50µs/Div Horizontal Scale
6
LT1457 AI03
(C) LT1457 Output
LT1457
U
U
W
U
APPLICATIONS INFORMATION High Speed Operation When the feedback around the op amp is resisitive (RF), a pole will be created with RF, the source resistance and capacitance (RS, CS), and the amplifier input capacitance (CIN ≈ 4pF). In low closed loop gain configurations and with RS and RF in the kilohm range, this pole can create excess phase shift and even oscillation on high speed amplifiers. Because the LT1457’s phase margin is very high, this problem is minimal. However, a small capacitor (CF) in parallel with RF eliminates this problem. With RS(CS + CIN) = RFCF, the effect of the feedback pole is completely removed.
U
PACKAGE DESCRIPTION
CF
RF
– CIN
CS
RS
OUTPUT
+ LT1457 AI04
Dimension in inches (millimeters) unless otherwise noted. N8 Package 8-Lead Plastic DIP
0.300 – 0.320 (7.620 – 8.128)
www.BDTIC.com/LINEAR 0.045 – 0.065 (1.143 – 1.651)
0.130 ± 0.005 (3.302 ± 0.127)
0.400 (10.160) MAX
8
0.009 – 0.015 (0.229 – 0.381)
(
+0.025 0.325 –0.015 8.255
+0.635 –0.381
7
0.045 ± 0.015 (1.143 ± 0.381)
)
0.100 ± 0.010 (2.540 ± 0.254)
0.125 (3.175) MIN
0.010 – 0.020 × 45° (0.254 – 0.508)
0.250 ± 0.010 (6.350 ± 0.254)
1
0.018 ± 0.003 (0.457 ± 0.076)
2
4
3
N8 0392
0.189 – 0.197 (4.801 – 5.004) 8
0.053 – 0.069 (1.346 – 1.752)
7
6
5
0.004 – 0.010 (0.101 – 0.254)
0.008 – 0.010 (0.203 – 0.254)
0°– 8° TYP
5
0.020 (0.508) MIN
S8 Package 8-Lead Plastic SOIC
0.016 – 0.050 0.406 – 1.270
6
0.065 (1.651) TYP
0.014 – 0.019 (0.355 – 0.483)
0.050 (1.270) BSC
0.228 – 0.244 (5.791 – 6.197)
0.150 – 0.157 (3.810 – 3.988)
1
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
2
3
4
SO8 0392
7
LT1457 U.S. Area Sales Offices NORTHEAST REGION Linear Technology Corporation One Oxford Valley 2300 E. Lincoln Hwy.,Suite 306 Langhorne, PA 19047 Phone: (215) 757-8578 FAX: (215) 757-5631
SOUTHEAST REGION Linear Technology Corporation 17060 Dallas Parkway Suite 208 Dallas, TX 75248 Phone: (214) 733-3071 FAX: (214) 380-5138
SOUTHWEST REGION Linear Technology Corporation 22141 Ventura Blvd. Suite 206 Woodland Hills, CA 91364 Phone: (818) 703-0835 FAX: (818) 703-0517
Linear Technology Corporation 266 Lowell St., Suite B-8 Wilmington, MA 01887 Phone: (508) 658-3881 FAX: (508) 658-2701
CENTRAL REGION Linear Technology Corporation Chesapeake Square 229 Mitchell Court, Suite A-25 Addison, IL 60101 Phone: (708) 620-6910 FAX: (708) 620-6977
NORTHWEST REGION Linear Technology Corporation 782 Sycamore Dr. Milpitas, CA 95035 Phone: (408) 428-2050 FAX: (408) 432-6331
International Sales Offices FRANCE Linear Technology S.A.R.L. Immeuble "Le Quartz" 58 Chemin de la Justice 92290 Chatenay Malabry France Phone: 33-1-41079555 FAX: 33-1-46314613
KOREA Linear Technology Korea Branch Namsong Building, #505 Itaewon-Dong 260-199 Yongsan-Ku, Seoul Korea Phone: 82-2-792-1617 FAX: 82-2-792-1619
TAIWAN Linear Technology Corporation Rm. 801, No. 46, Sec. 2 Chung Shan N. Rd. Taipei, Taiwan, R.O.C. Phone: 886-2-521-7575 FAX: 886-2-562-2285
GERMANY Linear Techonolgy GmbH Untere Hauptstr. 9 D-85386 Eching Germany Phone: 49-89-3197410 FAX: 49-89-3194821
SINGAPORE Linear Technology Pte. Ltd. 101 Boon Keng Road #02-15 Kallang Ind. Estates Singapore 1233 Phone: 65-293-5322 FAX: 65-292-0398
UNITED KINGDOM Linear Technology (UK) Ltd. The Coliseum, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Phone: 44-276-677676 FAX: 44-276-64851
www.BDTIC.com/LINEAR
JAPAN Linear Technology KK 5F YZ Bldg. 4-4-12 Iidabashi, Chiyoda-Ku Tokyo, 102 Japan Phone: 81-3-3237-7891 FAX: 81-3-3237-8010
World Headquarters Linear Technology Corporation 1630 McCarthy Blvd. Milpitas, CA 95035-7487 Phone: (408) 432-1900 FAX: (408) 434-0507 0294
8
Linear Technology Corporation
LT/GP 0594 10K • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7487 (408) 432-1900 ● FAX: (408) 434-0507 ● TELEX: 499-3977
LINEAR TECHNOLOGY CORPORATION 1994