LT1457 - Dual, Precision JFET Input Op Amp

Report 3 Downloads 57 Views
LT1457 Dual, Precision JFET Input Op Amp

U

DESCRIPTION

FEATURES ■ ■ ■ ■ ■ ■ ■ ■

Handles 10,000pF Capacitive Load 450µV Max Offset Voltage 1200µV Max Offset Voltage in S8 Package 50pA Bias Current at 70°C 13nV/√Hz Voltage Noise 4V/µs Slew Rate 4µV/°C Drift 130dB Channel Separation

U APPLICATIONS ■ ■ ■ ■

Sample-and-Hold (Drives Large Hold Capacitors) A/D and D/A Converters Photodiode Amplifiers Voltage-to-Frequency Converters

The LT1457 is a dual, JFET input op amp optimized for handling large capacitive loads in combination with precision performance. Precision specifications include 220µV offset voltage in plastic and surface mount packages. At 70°C input bias current is 50pA, input offset current is 20pA. Channel separation is 130dB. Other dual JFET input op amps from Linear Technology include the LT1057, which is three times faster than the LT1457 but at the expense of significantly lower capacitive load handling capability; and the LT1113 with 4.5nV/√Hz voltage noise.

www.BDTIC.com/LINEAR U W

TYPICAL PERFORMANCE CHARACTERISTICS Capacitive Load Handling

Input Offset Voltage Distribution S8 Package 21

100

18 PERCENT OF UNITS

OVERSHOOT (%)

80

VS = ±15V TA = 25°C AV = +1

60

40

15

VS = ±15V TA = 25°C

400 DUALS (800 OP AMPS) TESTED FROM 3 RUNS

12 9 6

20 3 0 0.1

1 10 CAPACITIVE LOAD (nF)

100 LT11457• TA01

0 –1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 INPUT OFFSET VOLTAGE (mV) LT1457 • TA02

1

LT1457 W

U

U

W W

W

Supply Voltage ...................................................... ±20V Differential Input Voltage ....................................... ±40V Input Voltage .......................... Equal to Supply Voltages Output Short-Circuit Duration .......................... Indefinite Operating Temperature Range ................ – 40°C to 85°C Storage Temperature Range ................. – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C

U

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION ORDER PART NUMBER

TOP VIEW +

OUT A

1

8

V

–IN A

2

7

OUT B

+IN A

3

6

–IN B

V–

4

5

+IN B

LT1457ACN8 LT1457CN8

A B

N8 PACKAGE 8-LEAD PLASTIC DIP TJMAX = 115°C, θJA = 130°C/ W

TOP VIEW +IN A

1

V–

2

+IN B

3

–IN B

A B

4

8

–IN A

7

OUT A

6

V+

5

OUT B

LT1457S8

S8 PART MARKING

S8 PACKAGE 8-LEAD PLASTIC SOIC

1457

NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE 8-LEAD DIP PIN LOCATIONS. INSTEAD, IT FOLLOWS THE INDUSTRY STANDARD LT1013DS8 SO PACKAGE CONFIGURATION.

TJMAX = 130°C, θJA = 190°C/ W

Consult factory for Industrial and Military grade parts.

www.BDTIC.com/LINEAR

ELECTRICAL CHARACTERISTICS

VS = ±15V, TA = 25°C,VCM = 0V unless otherwise noted. (Note 1)

SYMBOL PARAMETER VOS Input Offset Voltage

CONDITIONS LT1457AC/C LT1457S8

IOS

Input Offset Current

Fully Warmed Up

IB

Input Bias Current Input Resistance-Differential -Common-Mode

MIN

LT1457AC TYP MAX 150 450

LT1457C/LT1457S8 MIN TYP MAX 200 800 220 1200

UNITS µV µV

3

40

Fully Warmed Up

±5

±50

VCM = –11V to 8V VCM = 8V to 11V

1012 1012 1011

1012 1012 1011

Ω Ω Ω

4

4

pF

Input Capacitance

4

50

pA

±7

±75

pA

en

Input Noise Voltage

0.1Hz to 10Hz

2.0

2.1

µVP–P

en

Input Noise Voltage Density

fO = 10Hz fO = 1kHz (Note 2)

26 13

22

28 14

24

nV/√Hz nV/√Hz

1.5

4

1.8

6

fA/√Hz

in

Input Noise Current Density

fO = 10Hz, 1kHz (Note 3)

AVOL

Large-Signal Voltage Gain

VO = ±10V, RL = 2k VO = ±10V, RL = 1k

Input Voltage Range

150 120

350 250

100 80

300 220

±10.5

14.3 –11.5

±10.5

14.3 –11.5

V/mV V/mV V V

CMRR

Common-Mode Rejection Ratio

VCM = ±10.5V

86

100

82

98

dB

PSRR

Power Supply Rejection Ratio

VS = ±4.5V to ±18V

88

103

86

102

dB

VOUT

Output Voltage Swing

RL = 2k

±12

±13

±12

±13

SR

Slew Rate

2

4

2

4

2

V V/µs

LT1457

ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER

CONDITIONS

GBW

Gain-Bandwidth Product

(Note 5)

IS

Supply Current Per Amplifier

MIN 1.0

ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER Input Offset Voltage VOS

1.7

LT1457C/LT1457S8 MIN TYP MAX 1.0

3.0

1.8

132

MIN ● ● ●

Warmed Up, TA = 70°C Warmed Up, TA = 70°C VO = ±10V, RL = 2k VCM = ±10.4V VS = ±4.5V to ±18V RL = 2k

● ● ● ●

70 85 87 ±12

IOS IB AVOL CMRR PSRR VOUT IS

Average Temperature Coefficient of Input Offset Voltage Input Offset Current Input Bias Current Large-Signal Voltage Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing Supply Current Per Amplifier

mA dB

3

10

18 ±50 220 98 102 ±12.8

150 ±250

LT1457C/LT1457S8 MIN TYP MAX 330 1500 400 1900 4 16

50 80 84 ±12

20 ±60 200 96 100 ±12.8

3.2

250 ±350

3.2

1.7

www.BDTIC.com/LINEAR

SYMBOL PARAMETER Input Offset Voltage VOS

MHz 3.0

130

LT1457AC TYP MAX 250 900



TA = 70°C

ELECTRICAL CHARACTERISTICS

1.7

UNITS

VS = ±15V, VCM = 0V, 0°C ≤ TA ≤ 70°C, unless otherwise noted.

CONDITIONS LT1457AC/C LT1457S8

Average Temperature Coefficient of Input Offset Voltage (Note 4) Input Offset Current Input Bias Current Large-Signal Voltage Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing Supply Current Per Amplifier

LT1457AC TYP MAX 1.8

DC to 5kHz, VIN = ±10V

Channel Separation

IOS IB AVOL CMRR PSRR VOUT IS

VS = ±15V, TA = 25°C,VCM = 0V unless otherwise noted. (Note 1)

1.7

UNITS µV µV µV/°C pA pA V/mV dB dB V mA mA

VS = ±15V, VCM = 0V, –40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 6)

CONDITIONS LT1457AC/C LT1457S8

MIN ● ● ●

Warmed Up, TA = 85°C Warmed Up, TA = 85°C VO = ±10V, RL = 2k VCM = ±10.4V VS = ±5V to ±17V RL = 2k TA = – 40°C TA = 85°C

The ● denotes the specifications which apply over the full operating temperature range. Note 1: Typical parameters are defined as the 60% yield of distributions of individual amplifiers; i.e., out of 100 LT1457s (200 op amps) typically 120 will be better than the indicated specification. Note 2: This parameter is tested on a sample basis only. Note 3: Current noise is calculated from the formula: in = (2qIb)1/2, where q = 1.6 x 10 –19 coulomb. The noise of source resistors up to 1GΩ swamps the contribution of current noise.

● ● ● ●

40 84 86 ±12

LT1457AC TYP MAX 350 1100 3

10

0.1 ± 0.2 120 97 100 ±12.7

0.5 ± 0.7

LT1457C/LT1457S8 MIN TYP MAX 400 1800 500 2300 4 16

30 80 83 ±12

0.1 ±0.2 110 95 98 ±12.6

3.8 1.7

0.6 ±0.9

3.8 1.7

UNITS µV µV µV/°C nA nA V/mV dB dB V mA mA

Note 4: This parameter is not 100% tested. Note 5: Gain-Bandwidth product is not tested. It is guaranteed by design and by inference from the slew rate measurement. Note 6: The LT1457 is not tested and not quality-assurance-sampled at – 40°C and at 85°C. These specifications are guaranteed by design, correlation, and/or inference from 0°C, 25°C, and 70°C tests.

3

LT1457 U W

TYPICAL PERFORMANCE CHARACTERISTICS Input Bias and Offset Current vs Temperature

Input Bias Current Over the Common-Mode Range

100 BIAS CURRENT 30

10 OFFSET CURRENT 0

25 50 75 AMBIENT TEMPERATURE (°C)

120 100 TA = 70°C

80 60 40 20 0 –20 –15

100

21

0

5

LT1457 • TPC03

Long Term Drift of Representative Units 50

RL = 2k

9

VOLTAGE GAIN (V/mV)

12

VS = ±15V VO = ±10V

VS = ±15V TA = 25°C

40

300

RL = 1k

100

30

3

30 20

10

0

–10 –20 –30 –40

10 –50

0 0.2 0.4 0.6 0.8 –0.8 –0.6 –0.4 –0.2 0 INPUT OFFSET VOLTAGE (mV)

–50 –25

0 25 50 TEMPERATURE (°C)

75

100

0

1

2 3 TIME (MONTHS)

4

LT1457 • TPC05

LT1457 • TPC04

Voltage Noise vs Frequency

5

LT1457 • TPC06

0.1Hz to 10Hz Noise

Channel Separation vs Frequency

100

160 VS = ±15V TA = 25°C

CHANNEL SEPARATION (dB)

VS = ±15V TA = 25°C

NOISE VOLTAGE (1µV/DIV)

70 50

30 20

140 LIMITED BY THERMAL INTERACTION AT DC = 132dB

120

10

RS = 10Ω

LIMITED BY PIN TO PIN CAPACITANCE

100

VS = ±15V TA = 25°C VIN = 20VP-P TO 5kHz RL = 2k

80

1/f CORNER = 28Hz

RS = 1k

60 3

10

30

100 300 1k FREQUENCY (Hz)

3k

10k

LT1457 • TPC07

4

1 2 3 4 TIME AFTER POWER ON (MINUTES)

www.BDTIC.com/LINEAR

15

6

RMS VOLTAGE NOISE DENSITY (nV/√Hz)

N8 PACKAGE 30

15

1000

18

60

Voltage Gain vs Temperature

900 DUALS (1800 OP AMPS) TESTED FROM 3 RUNS

S8 PACKAGE

90

LT1457 • TPC02

Input Offset Voltage Distribution N8 Package VS = ±15V TA = 25°C

120

0 –10 –5 0 5 10 COMMON-MODE INPUT VOLTAGE (V)

LT1457 • TPC01

24

VS = ±15V TA = 25°C

TA = 25°C

OFFSET VOLTAGE CHANGE (µV)

300

VS = ±15V

140

CHANGE IN OFFSET VOLTAGE (µV)

VS = ±15V VCM = 0V WARMED UP

3

PERCENT OF UNITS

Warm-Up Drift 150

160

INPUT BIAS CURRENT (pA)

INPUT BIAS AND OFFSET CURRENT (pA)

1000

0

2

4 6 TIME (SECONDS)

8

10

LT1457 • TPC08

1

10

100 1k 10k FREQUENCY (Hz)

100k

1M

LT1457 • TPC09

LT1457 U W

TYPICAL PERFORMANCE CHARACTERISTICS Common-Mode Rejection Ratio vs Frequency

Common-Mode Range vs Temperature 15

120 VS = ±15V TA = 25°C

VS = ±5V TO ±17V FOR PSRR VS = ±15V, VCM = ±10.5V FOR CMRR

60 40 20

13 12

CMRR, PSRR (dB)

80

11 ±10 –11 –12

–14 0 10

100

1k 10k 100k FREQUENCY (Hz)

1M

–25

0 25 50 TEMPERATURE (°C)

LT1457• TPC10

CMRR 100

75

90 –50

100

0 25 50 TEMPERATURE (°C)

10 SUPPLY CURRENT PER AMPLIFIER (mA)

8

50 40

TA = – 40°C

30

www.BDTIC.com/LINEAR SLEW FALL GBW

1.5

GBW (MHz)

6

2.0

4 1.0

SLEW RISE 2 –50

–25

0 25 50 TEMPERATURE (°C)

75

2

VS = ±15V

VS = ±5V 1

0 25 50 TEMPERATURE (°C)

60

PHASE

5

CL = 1000pF GAIN

0

–15 0.1

40 20 0

–5 –10

VS = ±15V TA = 25°C

CL = 1000pF –20

CL = 10pF

1.0 FREQUENCY (MHz)

100

10 LT1457 • TPC16

TA = 85°C

TA = 25°C

TA = 85°C

–20 –30

TA = – 40°C VS = ±15V

0 1 2 3 TIME FROM OUTPUT SHORT TO GROUND (MINUTES) LT1457 • TPC15

Power Supply Rejection Ratio vs Frequency 140

VS = ±15V TA = 25°C

TA = 25°C 120

24 100 18

PSRR (dB)

80

PEAK TO PEAK OUTPUT SWING (V)

100

CL = 10pF

10

75

30

PHASE MARGIN (DEG)

15

–10

Undistorted Output Swing vs Frequency

PHASE MARGIN = 80°, CL = 10pF PHASE MARGIN = 51°, CL = 1000pF

TA = 25°C

0

LT1457 • TPC14

Gain, Phase vs Frequency 20

10

– 50 –25

LT1457 • TPC18

25

20

– 40 0 –50

100

100

Short-Circuit Current vs Time (One Output Shorted to Ground)

3 2.5

75

LT1457 • TPC12

Supply Current vs Temperature

VS = ±15V

–25

LT1457 • TPC11

Slew Rate, Gain-Bandwidth Product vs Temperature

SLEW RATE (V/µs)

PSRR

VS = ±15V

–15 – 50

10M

110

–13

SHORT-CIRCUIT CURRENT (mA)

CMRR (dB)

120

14 COMMON -MODE RANGE (V)

100

VOLTAGE GAIN (dB)

Common-Mode and Power Supply Rejections vs Temperature

12

POSITIVE SUPPLY

80 60

NEGATIVE SUPPLY

40 6 20 0 10k

0 100k 1M FREQUENCY (Hz)

10M LT11457• TPC17

10

100

1k 10k 100k FREQUENCY (Hz)

1M

10M

LT1457• TPC13

5

LT1457 U W

TYPICAL PERFORMANCE CHARACTERISTICS Large-Signal Response AV = 1, CL = 100pF

Small-Signal Response AV = 1, CL = 1000pF

LT1457 TPC19

Small-Signal Response AV = 1, CL = 10,000pF

LT1457 TPC20

LT1457 TPC21

U

W

U

U

APPLICATIONS INFORMATION Phase Reversal Protection Most industry standard JFET input single, dual, and quad op amps (e.g., LF156, LF351, LF353, LF411, LF412, OP-15, OP-16, OP-215, and TL084) exhibit phase reversal at the output when the negative common-mode limit at the input is exceeded (i.e., below –12V with ±15V supplies). The photos show a ±16V sine wave input (A), the response

of an LF412A in the unity gain follower mode (B), and the response of the LT1457 (C).

www.BDTIC.com/LINEAR

The phase reversal of photo (B) can cause lock-up in servo systems. The LT1457 does not phase-reverse due to a unique phase reversal protection circuit.

LT1457 AI01

(A) ±16V Sine Wave Input

LT1457 AI02

(B) LF412A Output

All Photos 5V/Div Vertical Scale, 50µs/Div Horizontal Scale

6

LT1457 AI03

(C) LT1457 Output

LT1457

U

U

W

U

APPLICATIONS INFORMATION High Speed Operation When the feedback around the op amp is resisitive (RF), a pole will be created with RF, the source resistance and capacitance (RS, CS), and the amplifier input capacitance (CIN ≈ 4pF). In low closed loop gain configurations and with RS and RF in the kilohm range, this pole can create excess phase shift and even oscillation on high speed amplifiers. Because the LT1457’s phase margin is very high, this problem is minimal. However, a small capacitor (CF) in parallel with RF eliminates this problem. With RS(CS + CIN) = RFCF, the effect of the feedback pole is completely removed.

U

PACKAGE DESCRIPTION

CF

RF

– CIN

CS

RS

OUTPUT

+ LT1457 AI04

Dimension in inches (millimeters) unless otherwise noted. N8 Package 8-Lead Plastic DIP

0.300 – 0.320 (7.620 – 8.128)

www.BDTIC.com/LINEAR 0.045 – 0.065 (1.143 – 1.651)

0.130 ± 0.005 (3.302 ± 0.127)

0.400 (10.160) MAX

8

0.009 – 0.015 (0.229 – 0.381)

(

+0.025 0.325 –0.015 8.255

+0.635 –0.381

7

0.045 ± 0.015 (1.143 ± 0.381)

)

0.100 ± 0.010 (2.540 ± 0.254)

0.125 (3.175) MIN

0.010 – 0.020 × 45° (0.254 – 0.508)

0.250 ± 0.010 (6.350 ± 0.254)

1

0.018 ± 0.003 (0.457 ± 0.076)

2

4

3

N8 0392

0.189 – 0.197 (4.801 – 5.004) 8

0.053 – 0.069 (1.346 – 1.752)

7

6

5

0.004 – 0.010 (0.101 – 0.254)

0.008 – 0.010 (0.203 – 0.254)

0°– 8° TYP

5

0.020 (0.508) MIN

S8 Package 8-Lead Plastic SOIC

0.016 – 0.050 0.406 – 1.270

6

0.065 (1.651) TYP

0.014 – 0.019 (0.355 – 0.483)

0.050 (1.270) BSC

0.228 – 0.244 (5.791 – 6.197)

0.150 – 0.157 (3.810 – 3.988)

1

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

2

3

4

SO8 0392

7

LT1457 U.S. Area Sales Offices NORTHEAST REGION Linear Technology Corporation One Oxford Valley 2300 E. Lincoln Hwy.,Suite 306 Langhorne, PA 19047 Phone: (215) 757-8578 FAX: (215) 757-5631

SOUTHEAST REGION Linear Technology Corporation 17060 Dallas Parkway Suite 208 Dallas, TX 75248 Phone: (214) 733-3071 FAX: (214) 380-5138

SOUTHWEST REGION Linear Technology Corporation 22141 Ventura Blvd. Suite 206 Woodland Hills, CA 91364 Phone: (818) 703-0835 FAX: (818) 703-0517

Linear Technology Corporation 266 Lowell St., Suite B-8 Wilmington, MA 01887 Phone: (508) 658-3881 FAX: (508) 658-2701

CENTRAL REGION Linear Technology Corporation Chesapeake Square 229 Mitchell Court, Suite A-25 Addison, IL 60101 Phone: (708) 620-6910 FAX: (708) 620-6977

NORTHWEST REGION Linear Technology Corporation 782 Sycamore Dr. Milpitas, CA 95035 Phone: (408) 428-2050 FAX: (408) 432-6331

International Sales Offices FRANCE Linear Technology S.A.R.L. Immeuble "Le Quartz" 58 Chemin de la Justice 92290 Chatenay Malabry France Phone: 33-1-41079555 FAX: 33-1-46314613

KOREA Linear Technology Korea Branch Namsong Building, #505 Itaewon-Dong 260-199 Yongsan-Ku, Seoul Korea Phone: 82-2-792-1617 FAX: 82-2-792-1619

TAIWAN Linear Technology Corporation Rm. 801, No. 46, Sec. 2 Chung Shan N. Rd. Taipei, Taiwan, R.O.C. Phone: 886-2-521-7575 FAX: 886-2-562-2285

GERMANY Linear Techonolgy GmbH Untere Hauptstr. 9 D-85386 Eching Germany Phone: 49-89-3197410 FAX: 49-89-3194821

SINGAPORE Linear Technology Pte. Ltd. 101 Boon Keng Road #02-15 Kallang Ind. Estates Singapore 1233 Phone: 65-293-5322 FAX: 65-292-0398

UNITED KINGDOM Linear Technology (UK) Ltd. The Coliseum, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Phone: 44-276-677676 FAX: 44-276-64851

www.BDTIC.com/LINEAR

JAPAN Linear Technology KK 5F YZ Bldg. 4-4-12 Iidabashi, Chiyoda-Ku Tokyo, 102 Japan Phone: 81-3-3237-7891 FAX: 81-3-3237-8010

World Headquarters Linear Technology Corporation 1630 McCarthy Blvd. Milpitas, CA 95035-7487 Phone: (408) 432-1900 FAX: (408) 434-0507 0294

8

Linear Technology Corporation

LT/GP 0594 10K • PRINTED IN USA

1630 McCarthy Blvd., Milpitas, CA 95035-7487 (408) 432-1900 ● FAX: (408) 434-0507 ● TELEX: 499-3977

 LINEAR TECHNOLOGY CORPORATION 1994