Supplementary Information for
Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes
André L. Cazetta,† Osvaldo Pezoti,† Karen C. Bedin,† Taís L. Silva,† Andrea Paesano Junior,§ Tewodros Asefa,‡,#,* and Vitor C. Almeida†,*
†
Laboratory of Environmental and Agrochemistry, Department of Chemistry, Universidade
Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil.
§
Department of Physics, Universidade Estadual de Maringá, Av. Colombo, 5790 Maringá,
Paraná, Brazil.
‡
Department of Chemistry and Chemical Biology, Rutgers, The State University of New
Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA.
#
Department of Chemical and Biochemical Engineering, Rutgers, The State University of
New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, USA.
*Corresponding Author E-mails: (T.A.)
[email protected]; (V.C.A.)
[email protected] S1
Table S1. Non-linear kinetic models of pseudo-first order, pseudo-second order and Elovich. Model
Equation
q = q 1 − e
Pseudo-first order
h = q
q =
Pseudo-second order
q t 1 + q t
h = q
1 q = ln (1 + t)
Elovich
k1 and k2 are pseudo-first and pseudo-second order constants, respectively; ho is initial adsorption rate; α and β are constants of Elovich model.
Table S2. Non-linear forms of the isotherm models of Langmuir, Freundlich e DubininRadushkevich and thermodynamic equations. Isotherm models
Equation Q C q = 1 + C 1 R! = 1 + C
Langmuir
/
%$q = " C
Freundlich
Q = Q exp (−)* +RT ln -1 + Dubinin-Radushkevich
E =
1
1 ./ 0 C
22 )*
Thermodynamic equations ∆G = ∆H° − T∆S° lnK =
∆G° = −RTlnK
∆S° ∆H° 1 − R R T
K =
q C
Qm is the maximum adsorption capacity; Ka is Langmuir constant; RL is the separation factor; KF and nF are Freundlich constants; KDR is Dubinin-Radushkevich constants; R is the universal gas constant (8.314 J mol-1 K-1); T is the absolute temperature in Kelvin (298 K) and E is the adsorption energy (kJ). ∆Go is the change in Gibb’s free energy, ∆So is the change in entropy, ∆Ho is the change in enthalpy, R is the gas constant (8.314 J/mol/K), Ke is the dimensional equilibrium constant (g L-1).
S2
Table S3. Relative elementary composition by XPS. Element
MAC1 (%)
MAC2 (%)
MAC3 (%)
C
86.40
72.74
64.39
O
11.63
23.12
29.23
Fe
1.17
2.91
4.93
N
0.80
1.23
1.45
Table S4. Thermodynamic parameters for SY adsorption on MAC. Temperature (K)
∆Go (kJ mol-1)
308
- 2.84
318
- 4.36
328
- 6.85
∆Ho (kJ mol-1)
∆So (J mol-1 K-1)
52.57
195.71
Figure S1. Chemical structure of Sunset Yellow food dye (SY).
S3
Intensity (a.u.)
(a)
C1s
O1s Fe2p N1s
800
700
600
500
400
300
200
100
0
200
100
0
200
100
0
Binding Energy (eV) (b) C1s
Intensity (a.u.)
O1s
Fe2p
N1s
800
700
600
500
400
300
Binding Energy (eV) (c) C1s
Intensity (a.u.)
O1s
Fe2p
N1s
800
700
600
500
400
300
Binding Energy (eV)
Figure S2. XPS survey spectra for different materials: MAC1 (a), MAC2 (b) and MAC3 (c). S4
Fe 2p3/2
(a)
Intensity (a.u.)
Fe 2p1/2
740
735
730
725
720
715
710
705
700
705
700
705
700
Binding energy (eV)
(b)
Fe2p3/2
Intensity (a.u.)
Fe2p1/2
740
735
730
725
720
715
710
Binding energy (eV)
Fe 2p3/2
(c)
Intensity (a.u.)
Fe 2p1/2
740
Satellite
735
730
725
720
715
710
Binding energy (eV)
Figure S3. Deconvoluted XPS spectra of Fe2p peak of MAC1 (a), MAC2 (b) and MAC3 (c). S5
4.0
(a)
3.5
9
3.0
8
2.5
7
2.0
6
1.5
5
1.0
pHfinal
10
4
∆pH
11
0.5 4.51
3
0.0
2
-0.5 3
4
5
6
7
8
9
10
11
10
(b)
9 8 pHfinal
7 6 5 4 4.12
3 2 3
4
5
6
7 8 pHinitial
9
10
(c)
10 9
pHfinal
8 7 6 5 4.10
3 3
4
5
6
7
8
9
10
5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5
11
11
4
5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5
∆ pH
11
∆pH
pHinitial
11
pHinitial
Figure S4. pHpzc of the MAC1 (a), MAC2 (b) and MAC3 (c). S6
30 27 24
-1
qe (mg g )
21 18 15 12 9 6 3 0 3
4
5
6 7 8 pH of solution
9
10
Figure S5. Effect of initial pH in the adsorption of SY on MAC1.
2.7 2
R = 0.9822
2.4 2.1
ln Ke
1.8 1.5 1.2 0.9 0.6 0.3 0.0 0.00305 0.00310
0.00315 0.00320 0.00325 1/T (K)
Figure S6. Results of thermodynamic analyses (ln Ke versus 1/T) for the adsorption of SY on a MAC material.
S7