Magnetic Activated Carbon Derived from Biomass Waste by ...

Report 21 Downloads 42 Views
Supplementary Information for

Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes

André L. Cazetta,† Osvaldo Pezoti,† Karen C. Bedin,† Taís L. Silva,† Andrea Paesano Junior,§ Tewodros Asefa,‡,#,* and Vitor C. Almeida†,*



Laboratory of Environmental and Agrochemistry, Department of Chemistry, Universidade

Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil.

§

Department of Physics, Universidade Estadual de Maringá, Av. Colombo, 5790 Maringá,

Paraná, Brazil.



Department of Chemistry and Chemical Biology, Rutgers, The State University of New

Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA.

#

Department of Chemical and Biochemical Engineering, Rutgers, The State University of

New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, USA.

*Corresponding Author E-mails: (T.A.) [email protected]; (V.C.A.) [email protected]

S1

Table S1. Non-linear kinetic models of pseudo-first order, pseudo-second order and Elovich. Model

Equation

q = q 1 − e 

Pseudo-first order

h =  q

q =

Pseudo-second order

 q   t 1 +  q t

h =  q  

1 q = ln (1 + t) 

Elovich

k1 and k2 are pseudo-first and pseudo-second order constants, respectively; ho is initial adsorption rate; α and β are constants of Elovich model.

Table S2. Non-linear forms of the isotherm models of Langmuir, Freundlich e DubininRadushkevich and thermodynamic equations. Isotherm models

Equation Q  C q = 1 +  C 1 R! = 1 +  C

Langmuir

/

%$q = " C

Freundlich

Q = Q exp (−)* +RT ln -1 + Dubinin-Radushkevich

E =

1

1  ./ 0 C

22 )*

Thermodynamic equations ∆G = ∆H° − T∆S° lnK  =

∆G° = −RTlnK 

∆S° ∆H° 1 − R R T

K =

q C

Qm is the maximum adsorption capacity; Ka is Langmuir constant; RL is the separation factor; KF and nF are Freundlich constants; KDR is Dubinin-Radushkevich constants; R is the universal gas constant (8.314 J mol-1 K-1); T is the absolute temperature in Kelvin (298 K) and E is the adsorption energy (kJ). ∆Go is the change in Gibb’s free energy, ∆So is the change in entropy, ∆Ho is the change in enthalpy, R is the gas constant (8.314 J/mol/K), Ke is the dimensional equilibrium constant (g L-1).

S2

Table S3. Relative elementary composition by XPS. Element

MAC1 (%)

MAC2 (%)

MAC3 (%)

C

86.40

72.74

64.39

O

11.63

23.12

29.23

Fe

1.17

2.91

4.93

N

0.80

1.23

1.45

Table S4. Thermodynamic parameters for SY adsorption on MAC. Temperature (K)

∆Go (kJ mol-1)

308

- 2.84

318

- 4.36

328

- 6.85

∆Ho (kJ mol-1)

∆So (J mol-1 K-1)

52.57

195.71

Figure S1. Chemical structure of Sunset Yellow food dye (SY).

S3

Intensity (a.u.)

(a)

C1s

O1s Fe2p N1s

800

700

600

500

400

300

200

100

0

200

100

0

200

100

0

Binding Energy (eV) (b) C1s

Intensity (a.u.)

O1s

Fe2p

N1s

800

700

600

500

400

300

Binding Energy (eV) (c) C1s

Intensity (a.u.)

O1s

Fe2p

N1s

800

700

600

500

400

300

Binding Energy (eV)

Figure S2. XPS survey spectra for different materials: MAC1 (a), MAC2 (b) and MAC3 (c). S4

Fe 2p3/2

(a)

Intensity (a.u.)

Fe 2p1/2

740

735

730

725

720

715

710

705

700

705

700

705

700

Binding energy (eV)

(b)

Fe2p3/2

Intensity (a.u.)

Fe2p1/2

740

735

730

725

720

715

710

Binding energy (eV)

Fe 2p3/2

(c)

Intensity (a.u.)

Fe 2p1/2

740

Satellite

735

730

725

720

715

710

Binding energy (eV)

Figure S3. Deconvoluted XPS spectra of Fe2p peak of MAC1 (a), MAC2 (b) and MAC3 (c). S5

4.0

(a)

3.5

9

3.0

8

2.5

7

2.0

6

1.5

5

1.0

pHfinal

10

4

∆pH

11

0.5 4.51

3

0.0

2

-0.5 3

4

5

6

7

8

9

10

11

10

(b)

9 8 pHfinal

7 6 5 4 4.12

3 2 3

4

5

6

7 8 pHinitial

9

10

(c)

10 9

pHfinal

8 7 6 5 4.10

3 3

4

5

6

7

8

9

10

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

11

11

4

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

∆ pH

11

∆pH

pHinitial

11

pHinitial

Figure S4. pHpzc of the MAC1 (a), MAC2 (b) and MAC3 (c). S6

30 27 24

-1

qe (mg g )

21 18 15 12 9 6 3 0 3

4

5

6 7 8 pH of solution

9

10

Figure S5. Effect of initial pH in the adsorption of SY on MAC1.

2.7 2

R = 0.9822

2.4 2.1

ln Ke

1.8 1.5 1.2 0.9 0.6 0.3 0.0 0.00305 0.00310

0.00315 0.00320 0.00325 1/T (K)

Figure S6. Results of thermodynamic analyses (ln Ke versus 1/T) for the adsorption of SY on a MAC material.

S7