m·n = m n · 24

www.iTutoring.com  -­‐  NOTES  

            Simplifying  Radical  (Square  Root)  Expressions  (Product  Property)        

Name    _________________________________   Date  ___________________      Period  _______  

Product Property for Square Roots For every number m ≥ 0 and n ≥ 0,

m·n = m · n 35 =

5·7 =

Method 1: Prime Factorization Express the radicand (under radical sign) as a product of prime factors

5 ·

7

Method 2: Perfect Squares Express the radicand (under radical sign) as a product of its largest perfect square

Prime factors must “come out” in pairs  

             

24 Method 1: Prime Factorization

24

 

Method 2: Perfect Squares 4 = 22 9 = 32 16 = 42 25 = 52 36 = 62 49 = 72 64 = 82 81 = 92 100 = 102

24

 

   

18 Method 1: Prime Factorization

Method 2: Perfect Squares 4 = 22 9 = 32 16 = 42 25 = 52 36 = 62 49 = 72 64 = 82 81 = 92 100 = 102

18

18

 

           

72 Method 1: Prime Factorization

72

         

Method 2: Perfect Squares 4 = 22 9 = 32 16 = 42 25 = 52 36 = 62 49 = 72 64 = 82 81 = 92 100 = 102

72

 

© iTutoring.com Simplifying  Radical  (Square  Root)  Expressions  (Product  Property)   Pg.  2  

   

72 Method 1: Prime Factorization

Method 2: Perfect Squares 4 = 22 9 = 32 16 = 42 25 = 52 36 = 62 49 = 72 64 = 82 81 = 92 100 = 102

72

72

 

           

20x2y Method 1: Prime Factorization

20x2y

         

Method 2: Perfect Squares 4 = 22 9 = 32 16 = 42 25 = 52 36 = 62 49 = 72 64 = 82 81 = 92 100 = 102

20x2y

 

© iTutoring.com Simplifying  Radical  (Square  Root)  Expressions  (Product  Property)   Pg.  3  

 

12a3b5 Method 1: Prime Factorization

Method 2: Perfect Squares 4 = 22 9 = 32 16 = 42 25 = 52 36 = 62 49 = 72 64 = 82 81 = 92 100 = 102

12a3b5

12a3b5

       

 

Product Property for Square Roots For every number m ≥ 0 and n ≥ 0,

m·n = m · n 35 =

5·7 =

Method 1: Prime Factorization Express the radicand (under radical sign) as a product of prime factors

5 ·

7

Method 2: Perfect Squares Express the radicand (under radical sign) as a product of its largest perfect square

Prime factors must “come out” in pairs  

© iTutoring.com Simplifying  Radical  (Square  Root)  Expressions  (Product  Property)   Pg.  4