Manifold Construction and Parameterization for ... - ASP-DAC 2018

Report 0 Downloads 52 Views
Manifold Construction and Parameterization for Nonlinear Manifold-Based Model Reduction Chenjie Gu and Jaijeet Roychowdhury {gcj,jr}@eecs.berkeley.edu

University of California, Berkeley

ASPDAC 2010

Slide 1

Outline ●

Background Introduction to MOR and maniMOR ● Manifold construction and parameterization ●



Manifold construction using integral curves DC manifold and the normalized integral curve equation ● Ideal and almost-ideal manifold ● Algorithm ●

Experimental results ● Conclusion ●

ASPDAC 2010

Slide 2

Background

ASPDAC 2010

Slide 3

Model Order Reduction Original system (size n)

d~x = f (~x) + B~ u(t) dt

~ u(t)

v : ~x 7! ~ z;

~ x 2 Rn ; ~z 2 Rq ;

y = C~x ~

q¿n

Reduced system (size q)

~ u(t) ASPDAC 2010

d~z = fr (~ z ) + Br ~ u(t) dt

~y = Cr ~z Slide 4

Low-order Linear Subspace 2

3

2

x ¡10 d 4 1 5 4 x2 1 = dt x 1 3

1 ¡1 0

32

3

2

3

1 x1 1 0 5 4 x2 5 + 4 0 5 u(t) ¡1 x3 0

Low-order linear subspace Defined by

ASPDAC 2010

x=Vz

Slide 5

Low-order Nonlinear Manifold 2

3

2

x ¡10 d 4 1 5 4 x2 1 = dt x 1 3

1 ¡1 0

32

3

2

3 2

3

1 x1 0 1 0 5 4 x2 5 ¡ 4 0 5+ 4 0 5 u(t) ¡1 x3 x21 0

Low-order nonlinear manifold

ManiMOR: MOR Based on Nonlinear Projection on Nonlinear Manifolds ASPDAC 2010

Slide 6

Key Steps in ManiMOR ●

“Find” the nonlinear manifold ●



Capture important dynamics

“Parameterize” the manifold ●

Build up the coordinate system

ASPDAC 2010

Slide 7

Manifold and Its Parameterization 8 < x = cos(t) y = sin(t) : z=t

ASPDAC 2010

Slide 8

Manifold and Its Parameterization

M

Parameterization of the manifold

Tangent space Tx M ½ Rn

U

x

à v

Rq

~ U

z

System of coordinates Manifold defined by pairs of fx; Tx M g ASPDAC 2010

No explicit mapping may be derived. Instead, use piecewise linear approximation. Slide 9

Manifold and Its Parameterization 1. Identify the manifold that capture important dynamics 2. Compute and store pairs of fx; Tx M g=fz; Tz M g

ASPDAC 2010

Slide 10

DC Manifold DC operating points constitute a DC manifold. d~ x = f (~ x) + B~ u(t) = 0 dt

How to compute and parameterize the DC manifold? ASPDAC 2010

Slide 11

DC Manifold f (~ x) + B~ u(t) = 0

A straight-forward solution:

Computation: Perform DC sweep analysis Parameterization: Define z coordinates using values of

u

Problems: Hard to choose step size in DC sweep analysis Not generalizable to higher dimensions

ASPDAC 2010

Slide 12

Introduction to Integral Curve Given a vector field v(x) , dx = v(x) its integral curve is the curve ° ´ x(t) such that dt

ASPDAC 2010

Slide 13

DC Manifold as an Integral Curve Need to derive the relationship between dx and du f (~ x) + B~ u(t) = 0

@f dx +B =0 @x du

dx = ¡[G(x)]¡1 B du

The first Krylov basis.

Initial condition: x(u = 0) = xDC ju=0 Solutions are DC operating points.

Any numerical integration / transient analysis code can be applied. ASPDAC 2010

Slide 14

Parameterization using Euclidean Distance Parameterization using values of u (x2 ; y2 ) (x1 ; y1 )

(x3 ; y3 ) u0 + 2h

u0 + h

u0

Parameterization using Euclidean Distance (x3 ; y3 ) (x2 ; y2 ) u0 + h

(x1 ; y1 )

u0 + 2h

u0 Sample points equally spaced on the DC manifold ASPDAC 2010

Slide 15

Parameterization using Euclidean Distance

ASPDAC 2010

Slide 16

Normalized Integral Curve Equation Local Euclidean distance is

jjdxjj2 = jduj

dx = ¡[G(x)]¡1 B du

¯¯ ¯¯ ¯¯ dx ¯¯ ¯¯ ¯¯ = jj[G(x)]¡1 Bjj2 = 1 Generally not satisfied ¯¯ du ¯¯ 2 Normalize RHS

dx [G(x)]¡1 B = du jj[G(x)]¡1 Bjj2 ASPDAC 2010

Normalized Integral Curve Equation

Does it define the same integral curve? Slide 17

Validation

ASPDAC 2010

Slide 18

Normalized Integral Curve Equation Theorem: ^(¿ ) satisfy Suppose t = ¾(¿ ); x(t) and x

d d x(t) = g(x(t)) and x ^(¿ ) = ¾0 (¿ )g(^ x(¿ )) , respectively. dt d¿ ^(¿ ) span the same state space. Then x(t) and x Sketch of proof: 0 dt = ¾ (¿ )d¿ . t = ¾(¿ ) Since , we have

^(¿ ) ´ x(t) = x ^(¾(t)) , then Define x

d d^ x(¿ ) dt x ^(¿ ) = = ¾ 0 (¿ )g(x(t)) = ¾0 (¿ )g(^ x(¿ )) d¿ dt d¿

ASPDAC 2010

Slide 19

Normalized Integral Curve Equation dx = ¡[G(x)]¡1 B du

dx [G(x)]¡1 B = du jj[G(x)]¡1 Bjj2

Solution: x(u)

^(^ u) Solution: x

Define u = ¾(^ u) =

Z

0

u ^

1 d¹ jj[G(^ x(¹))]¡1 Bjj2

From the theorem, x(u) and x ^(^ u) define the same integral curve. ASPDAC 2010

Slide 20

Normalized Integral Curve Equation dx [G(x)]¡1 B = du jj[G(x)]¡1 Bjj2

The first normalized Krylov basis.

Directly available from Krylov subspace methods. Generalizable to higher dimensions.

ASPDAC 2010

Slide 21

Ideal Nonlinear Manifold @x = v1 (x); @z1

@x = v2 (x); @z2

¢¢¢ ;

@x = vq (x): @zq

V (x) = [v1 (x); ¢ ¢ ¢ ; vq (x)] is the projection matrix

for the reduced linearized system (at x ).

For example, Arnoldi algorithm generates a basis for Kq ([G(x)]¡1 ; B) = f[G(x)]¡1 B; [G(x)]¡2 B; ¢ ¢ ¢ ; [G(x)]¡q Bg

However, this set of PDEs is over-determined. ASPDAC 2010

Slide 22

Almost-Ideal Manifold Construction @x = v1 (x) @z1

xDC

@x = v3 (x) @z3 ASPDAC 2010

@x = v2 (x) @z2 Slide 23

Almost-Ideal Manifold Construction

ASPDAC 2010

Slide 24

Experimental Results

ASPDAC 2010

Slide 25

A Hand-Calculable Example d x1 = ¡x1 + x2 ¡ u(t) dt d x2 = x21 ¡ x2 dt

f (x) =

G(x) = ASPDAC 2010

·

¡1 2x1

·

¡x1 + x2 x21 ¡ x2

1 ¡1

¸

;

¸

;

[G(x)]

B=

¡1

·

¡1 0

1 = 2x1 ¡ 1

¸ ·

1 2x1

1 1

¸ Slide 26

DC and AC Manifold ¡1

[G(x)]

1 = 2x1 ¡ 1

·

1 2x1

1 1

¸

;

B= ·

·

¡1 0 ¸

¸

1 1 w1 (x) = [G(x)] B = 2x1 ¡ 1 2x1 · ¸ 1 ¡1 ¡ 2x1 ¡2 w2 (x) = [G(x)] B = ¡4x1 (2x1 ¡ 1)2 ¡1

@x w1 (x) = v1 (x) = DC manifold: @z1 jjw1 (x)jj2

AC manifold: ASPDAC 2010

@x w2 ¡ < w2 ; v1 > v1 = v2 (x) = @z1 jjw2 ¡ < w2 ; v1 > v1 jj2 Slide 27

DC and AC Manifold

ASPDAC 2010

Slide 28

Application to MOR 2

3

2

x ¡10 d 4 1 5 4 x2 1 = dt x3 1

1 ¡1 0

32

3

2

3

2

3

1 x1 0 1 0 5 4 x2 5 ¡ 4 0 5 + 4 0 5 u(t) ¡1 x3 x21 0

Trajectory of the full system stays close to the manifold

ASPDAC 2010

Slide 29

Simulation of the Reduced Order Model Response to a step input

Response to a sinusoidal input

ASPDAC 2010

Slide 30

Conclusion ●

Presented a manifold construction and parameterization procedure Based on computing integral curves ● Preserves local distance ● Captures important system responses ● Such as DC and AC responses ●



Application to manifold-based MOR ●

ASPDAC 2010

Validated against several examples

Slide 31