Material

Report 4 Downloads 78 Views
Supporting Information for

Atomic-Level Understanding toward a HighCapacity and High-Power Silicon Oxide (SiO) Material Sung Chul Jung †,§, Hyung-Jin Kim†,§, Jae-Hun Kim‡, and Young-Kyu Han*,† †

Department of Energy and Materials Engineering and Advanced Energy and Electronic

Materials Research Center, Dongguk University-Seoul, Seoul 100-715, Republic of Korea ‡

School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Republic of

Korea Corresponding Author *E-mail: [email protected]; Phone: +82 2 2260 4975. Author Contributions §

S.C.J. and H.J.K. contributed equally.

S1

Full list of references 2, 12, and 36:

(2) Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y. Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes through Solid–Electrolyte Interphase Control. Nat. Nanotechnol. 2012, 7, 310–315.

(12) Zhao, H.; Wang, Z.; Lu, P.; Jiang, M.; Shi, F.; Song, X.; Zheng, Z.; Zhou. X.; Fu. Y.; Abdelbast, G.; Xiao, X.; Liu, Z.; Battaglia, V. S.; Zaghib, K.; Liu, G. Toward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-Ion Battery Design. Nano Lett. 2014, 14, 6704–6710.

(36) Sakko, A.; Sternemann, C.; Sahle, C. J.; Sternemann, H.; Feroughi, O. M.; Conrad, H.; Djurabekova, F.; Hohl. A.; Seidler. G. T.; Tolan. M.; Hämäläinen, K. Suboxide Interface in Disproportionating a-SiO Studied by X-Ray Raman Scattering. Phys. Rev. B 2010, 81, 205317.

S2

Table S1. The numbers of atoms and k-point meshes used for the calculations of vacancy formation energies and Li diffusion barriers in Li15Si4, Li2Si2O5, Li6Si2O7, Li4SiO4, and Li2O crystals. NLi, NSi, and NO represent the numbers of Li, Si, and O atoms in the supercell for a perfect crystal, respectively. The experimentally reported lattice parameters1–6 were used as initial input parameters for the calculations. crystal

NLi

NSi

NO

k-point mesh

Li15Si4

60

16

Li2Si2O5

32

32

80

3×2×3

Li6Si2O7

24

8

28

6×6×4

Li4SiO4

112

28

112

1×1×1

Li2O

64

32

4×4×4

3×3×3

S3

Figure S1. Partial radial distribution functions gαβ(r) for the Li–Li, Li–Si, Li–O, Si–Si, Si–O, and O–O pairs in LixSiO.

S4

Figure S2. Partial coordination numbers of O (CNO−Si and CNO−Li) and of Si (CNSi−Li) in LixSiO. The bond cutoff distances are 2.0, 2.5, and 3.3 Å for CNO−Si, CNO−Li, and CNSi−Li, respectively.

S5

Li diffusion barrier calculations We calculated the Li diffusion barriers in Li15Si4, Li2Si2O5, Li6Si2O7, Li4SiO4, and Li2O crystals. The migration of intrinsic Li vacancies in these crystals was regarded as the diffusion mechanism.7,8 The energy barriers for the Li vacancy diffusion were determined by using the climbing image nudged elastic band (CI-NEB) method9 for finding the minimum energy reaction paths. We found the lowest-barrier diffusion paths by investigating various diffusion paths in the crystals. The calculated lowest barriers are Eb = 0.11, 0.47, 0.54, 0.45, and 0.26 eV in Li15Si4, Li2Si2O5, Li6Si2O7, Li4SiO4, and Li2O crystals, respectively (see below).

S6

S7

S8

Here, the vacancy diffusion involves a concerted motion of four Li ions.

S9

S10

S11

S12

References (1) Obrovac, M. N.; Christensen, L. Structural Changes in Silicon Anodes during Lithium Insertion/Extraction. Electrochem. Solid-State Lett. 2004, 7, A93–A96. (2) Hatchard, T. D.; Dahn, J. R. In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. J. Electrochem. Soc. 2004, 151, A838–A842. (3) De Jong, B. H. W. S.; Supèr, H. T. J.; Spek, A. L.; Veldman, N.; Nachtegaal, G.; Fischer, J. C. Mixed Alkali Systems: Structure and 29Si MASNMR of Li2Si2O5 and K2Si2O5. Acta Cryst. Section B: Structural Science 1998, 54, 568–577. (4) Voellenkle, H.; Wittmann, A.; Nowotny, H. The Crystal Structure of the Compound Li6Si2O7. Monatsh. Chem. 1969, 100, 295–303. (5) Tranqui, D.; Shannon, R. D.; Chen, H.-Y.; Iijima, S.; Baur, W. H. Crystal Structure of Ordered Li4SiO4. Acta Cryst. Section B: Structural Crystallography and Crystal Chemistry 1979, 35, 2479–2487. (6) Lowton, R. L.; Jones, M. O.; David, W. I.; Johnson, S. R.; Sommariva, M.; Edwards, P. P. The Synthesis and Structural Investigation of Mixed Lithium/Sodium Amides. J. Mater. Chem. 2008, 18, 2355–2360. (7) Islam, M. S.; Fisher, C. A. J. Lithium and Sodium Battery Cathode Materials: Computational Insights into Voltage, Diffusion and Nanostructural Properties. Chem. Soc. Rev. 2014, 43, 185–204. (8) Van Der Ven, A.; Bhattacharya, J.; Belak, A. A. Understanding Li Diffusion in LiIntercalation Compounds. Acc. Chem. Res. 2013, 46, 1216–1225. (9) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901–9904.

S13