SUPPORTING INFORMATION
Measurement of hydrogen solubility in potential Liquid Organic Hydrogen Carriers Rabya Aslam1, Karsten Müller,1,*, Michael Müller2, Marcus Koch2, Peter Wasserscheid2,3, Wolfgang Arlt1 1
Institute
of
Separation
Science
and
Technology,
Friedrich-Alexander-Universität
Erlangen-Nürnberg,
Egerlandstrasse 3, 91058 Erlangen, Germany. 2
Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
3
Forschungszentrum Jülich, „Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien“ (IEK 11), Nägelsbachstrasse 49 b, 91058 Erlangen, Germany.
*(Tel.: +49 9131 8527455; Fax. +49 9131 8527441; e-mail:
[email protected] )
S1
VAPOR PRESSURE DATA FOR LOHCs
Vapor pressure data for Toluene and Methylcyclohexane were taken from the work published by Willingham et al, and Besley et al.1,2 The vapor pressure data for NEC and DBT systems were taken from the work published by Verevkin et. al and Müller et. al. 3,4 S2
DENSITY DATA FOR LOHCs
The densities of the LOHCs used in this work were measured using a vibrating tube density meter (DMA 5000, Anton Paar) at atmospheric pressures. The density meter was initially calibrated with air and double distilled degasified water at 293 K. At high pressures, the density data were measured using high pressure density meter (DMA HTP, Anton Paar). The instrument was initially calibrated with double distilled water. Also the experimental data for the toluene in this work was compared with the values reported in the literature5 and deviation was found less than 0.012 % at 5 bar and 293 K. The density data are listed in Table S1.
Table S1: density data for LOHCs as a function of pressure and temperature
T/K
293.2
303.2
313.2
323.2
MCH
H0-DBT
H18-DBT
H12-NEC
H0-NEC
343.2
353.2
363.2
373.2
-3
ρ/g.cm
P/bar Toluene
333.2
5.10
0.86730
0.85563
0.84427
0.83321
0.82243
0.81193
0.80169
0.79171
0.78197
7.52
0.86761
0.85594
0.84457
0.83351
0.82273
0.81222
0.80198
0.79200
0.78226
8.91
0.86780
0.85612
0.84475
0.83368
0.82290
0.81239
0.80215
0.79216
0.78242
5.06
0.76972
0.76108
0.75263
0.74437
0.73629
0.72838
0.72064
0.71307
0.70565
7.14
0.76991
0.76127
0.75282
0.74455
0.73647
0.72856
0.72082
0.71324
0.70582
8.91
0.77007
0.76142
0.75297
0.74471
0.73662
0.72871
0.72097
0.71339
0.70596
5.41
1.04530
1.03757
1.02995
1.02245
1.01506
1.00777
1.00058
0.99350
0.98652
6.22
1.04535
1.03762
1.03001
1.02251
1.01511
1.00782
1.00064
0.99355
0.98657
7.17
1.04542
1.03769
1.03007
1.02257
1.01518
1.00789
1.00070
0.99362
0.98663
8.98
1.04554
1.03782
1.03020
1.02269
1.01530
1.00801
1.00082
0.99374
0.98675
5.05
0.91455
0.90643
0.89845
0.89061
0.88290
0.87533
0.86789
0.86057
0.85338
6.51
0.91463
0.90651
0.89853
0.89069
0.88299
0.87542
0.86797
0.86065
0.85346
7.50
0.91469
0.90657
0.89859
0.89075
0.88304
0.87547
0.86803
0.86071
0.85351
8.92
0.91478
0.90665
0.89867
0.89083
0.88313
0.87555
0.86811
0.86079
0.85359
5.50
0.94159
0.93382
0.92617
0.91865
0.91125
0.90397
0.89680
0.88975
0.88280
6.53
0.94167
0.93390
0.92625
0.91873
0.91133
0.90404
0.89687
0.88982
0.88287
7.43
0.94174
0.93396
0.92632
0.91879
0.91139
0.90411
0.89694
0.88988
0.88294
8.91
0.94185
0.93407
0.92642
0.91890
0.91150
0.90421
0.89704
0.88999
0.88304
5.55
1.06278
1.05537
1.04806
1.04085
7.41
1.06293
1.05551
1.04820
1.04099
1.06305
1.05563
1.04832
1.04111
8.92 The standard uncertainties u are u(T) = 0.01 K and u(ρ) = 0.0020 g.cm
-3
Table S2: Second virial coefficient for LOHCs calculated using Hayden O’Connel method T/K 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15 373.15
S3
H2
TOL
MCH
14.27 14.49 14.69 14.88 15.05 15.21 15.36 15.50 15.63
-2981.6 -2639 -2356.9 -2121.7 -1923.2 -1754.1 -1618.5
-2900.1 -2585.7 -2325.9 -2101.8 -1911.3 -1715.8 -1610.2
H0-DBT B/ cm3.mol-1 -31227.0 -24082.0 -18885.0 -15003.0 -12140.0 -9927.9 -8214.8 -6817.8 -5804.5
H18-DBT -22861.0 -17892.1 -14161.0 -11403.0 -9304.6 -7686.2 -6421.1 -5420.0 -4618.1
H0-NEC
H12-NEC
-4176.6 -3990.3 -3259.5
-9548.3 -7935.0 -6679.6 -5688.8 -4896.7 -4255.8 -3731.5 -3298.5 -2936.3
Analysis of dibenzyltoluene and perhydro-dibenzyltoluene
GC-analysis of H0-DBT and H18-DBT were was performed using an Agilent technology 7890 A system. The system was equipped with a flame ionization detector, an auto sampler (7683 D and a Restek Rxil7Sil column (30 m x 250 µm x 0.25 µm). For the analysis, the injection sample was prepared in n-hexane (injection conc. ≈ 10 mg/ml). The injection temperature was 300 °C and the program for oven was as follows: 70 °C for 2 min, then 40°C/min to 160 °C, and then 3 °C/min to 300 °C with the final holding time of 1 min. The gas chromatograms for both H0-DBT and H18-DBT are shown in Figure S1 and S2, respectively. The contents of each isomer in H0-DBT and H18-DBT are given in Table S3 and S4, respectively.
Figure S1: Gas chromatogram of dibenzyltoluene (isomeric mixture)
Figure S2: Gas chromatogram of perhydro-dibenzyltoluene (isomeric mixture)
Table S3: Composition of dibenzyltoluene Isomer H0-DBT-1 H0-DBT-2 H0-DBT-3 H0-DBT-4 H0-DBT-5 H0-DBT-6 H0-DBT-7
Retention time/ min 30.92 31.47 32.45 33.91 34.29 34.80 34.96
% age in the mixture 17.1 11.4 29.7 8.6 14.3 8.6 10.3
Table S4: Composition of perhydro-dibenzyltoluene Isomer H18-DBT-1 H18-DBT-2 H18-DBT-3 H18-DBT-4 H18-DBT-5 H18-DBT-6 H18-DBT-7 H18-DBT-8 H18-DBT-9 H18-DBT-10
Retention time/ min 20.47 20.98 21.55 22.45 22.76 23.12 23.56 24.35 24.61 24.801
% age in the mixture 7.6 11.4 17.3 6.8 21.1 7.6 12.2 5.7 3.8 6.5
S4
NMR-Analysis
Nuclear magnetic Resonance (NMR) analysis was ECX 400 from JEOL. 0. 1 mL of liquid sample was diluted in 1 mL of Dichloromethane-d2. The NMR of H0-DBT and H18-DBT are shown in Figure S3 and S4, respectively.
Figure S3: 1H NMR spectrum for dibenzyltoluene
Figure S4: 1H NMR spectrum for perhydro-dibenzyltoluene
REFERENCES 1.
Willingham, C.B.; Taylor, J.T.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and
Boiling points of some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons. J. Res. Natl. Bur. Stand. (U.S.). 1945, 35, 219-244. 2.
Besley, L.M.; Bottomley, G.A., Vapour Pressure of Toluene from 273.15 to 298.15 K, J.
Chem. Thermodyn. 1974, 6, 577-580. 3.
Verevkin, S. P.; Emel’yanenko, V. N.; Heintz, A.; Stark, K.; Arlt, W., Liquid Organic
Hydrogen Carriers: An Upcoming Alternative to Conventional Technologies. Thermochemical Studies. Ind. Eng. Chem. Res. 2012, 51, 12150-12153. 4.
Müller, K.; Stark, K.; Emel’yanenko, V. N.; Varfolomeev, M. A.; Zaitsau, D. H.; Shoifet,
E.; Schick, C.; Verevkin, S. P.; Arlt, W., Liquid Organic Hydrogen Carriers: Thermophysical and Thermochemical Studies of Benzyl- and Dibenzyl-toluene Derivatives. Ind. Eng. Chem. Res. 2015, 54, 7967-7976.
5.
Glen, N.F.; Johns. A.I., Determination of the Density of Toluene in the Range from (293
to 373) K and from (0.1 to 30) MPa. J. Chem. Eng. Data. 2009, 54, 2538-2545.