Modeling plume from pipeline discharge of dredged material

Report 4 Downloads 30 Views
Modeling plume from pipeline discharge of dredged material Sung-Chan Kim1, Paul R. Schroeder2, Terry K. Gerald2, Tahirih C. Lackey1, Joseph Z. Gailani1,Presenter

1Coastal

and Hydraulics Laboratory

2Environmental

Laboratory

October 24, 2012

Outlines •Processes •Existing models •Model improvements •Examples and issues •Concluding remarks BUILDING STRONG®

Innovative solutions for a safer, better world

Pipeline Discharge Processes

Turbidity Plume Slow Settling Entrainment Hindered Settling Fluid Mud Underflow Accumulated or non-flowing mud

BUILDING STRONG®

Innovative solutions for a safer, better world

Pipeline Discharge Processes •Multi-phase plume (open water discharge, overflow, etc) •Both inertial force and buoyancy are important •Koh & Chang (1973) Convective descent Dynamic collapse Passive diffusion ← lacking dense plume dynamics

BUILDING STRONG®

Innovative solutions for a safer, better world

Existing Models •Automated Dredging Disposal Alternative Management System (ADDAMS) STFATE– intermittent disposal (Johnson & Fong, 1995) CDFATE – continuous disposal (D-CORMIX: Doneker et al, 2004) •Brandsma & Divoky (1976) – extended Koh & Chang (1973) DIFID – intermittent disposal (became STFATE) DIFCD – continuous disposal •PDFATE (Teeter, 2002) –version 0 Based on turbidity current dynamics over sloped bottom

BUILDING STRONG®

Innovative solutions for a safer, better world

STFATE

BUILDING STRONG®

Innovative solutions for a safer, better world

Schematics of DIFCD

BUILDING STRONG®

Innovative solutions for a safer, better world

DIFCD Jet d π r 2 ρ= U ) E ρ a − ∑ Si ρ i ( ds i      d π r 2 ρUU = B + E ρ aU a − ∑ Si ρ iU − FD ds i d π r 2 ( ρ a ( 0 ) − ρ )= U E ( ρ a ( 0 ) − ρ a ) − ∑ Si ( ρ a ( 0 ) − ρ i ) ds i = E Emomentum + Ethermal Entrainment

(

)

(

)

Si = 2rw fiCsi

Settling

Dynamic Collapse d = (π abL ) E ρ a − ∑ Si ρ i ds i      d M = B + E ρ aU a − ∑ Si ρ iU − D ds i d = ( B ) E ( ρ a ( 0 ) − ρ a ) − ∑ Si ( ρ a ( 0 ) − ρ i ) ds i E = Ecollapse Entrainment

( )

Si = 2bLw fiCsi

BUILDING STRONG®

Settling

Innovative solutions for a safer, better world

PDFATE (version 0)

BUILDING STRONG®

Innovative solutions for a safer, better world

PDFATE (version 0) Mass conservation

dQ S   = B  EwU − − PWs  dx C   Entrainment

Deposition

Water loss

Momentum conservation 1.43C f Ri tan θ  Ri ∆ρ  dQ  Ri ∆ρ  dCQ  Ri  dB  h − + − + 2 + − +  − 1   ρ ρ 2 2 2 h h Qdx CQdx Bdx dh        =  1 − Ri dx Friction

Body force (slope & buoyancy)

Spreading   E Ri  1.7  w    Cf    dB  = 1 − dx   B  2 − 1 , if Ew ~ 0 1.4    c1hRi 

BUILDING STRONG®

Innovative solutions for a safer, better world

Application – Newark Harbor

BUILDING STRONG®

Innovative solutions for a safer, better world

DIFCD

D-CORMIX)

Clouds at t=3600 s

1.6

3

Sand Fines1 Fines2

1.8

C (kg/m )

0.2

2

0.15 0.1 0.05 0 0 10

10

1

10

2

10

3

X (m)

3

Mass Entrained (ft )

1.4

6 BV (m)

1.2 1

4 2

0.8 0 0 10

0.6

10

1

10

2

10

3

X (m) 400 BH (m)

0.4 0.2 0 800

300 200 100

1000

1200

1400 Distance (ft)

1600

1800

2000

0 0 10

10

1

10

2

10

3

X (m)

•Finer – more entrainment •Each time step produces 2 cloudes •Initial entrainment •Entrainment after collapse BUILDING STRONG®

•Discontinuity between jet plume and boundary impingement •Thinning & spreading of plume after impingement Innovative solutions for a safer, better world

Axi-symmetic Flow development

propagation Gravity flow

Distinct ambient and gravity flows BUILDING STRONG®

3D bottom features Innovative solutions for a safer, better world

New PDFATE

Model Schematics

Jet Plume

Gravity Plume UN xN

BUILDING STRONG®

Innovative solutions for a safer, better world

Gravity plume 2πrhu = Q

Mass conservation reach

thickness

Flux (from jet plume)

speed Froude Number

Momentum conservation

dr u= = Fr g 0' φh dt Reduced gravity Sediment fraction

Settling velocity

φ dφ = wsf dt h

Particle conservation

r u BUILDING STRONG®

h Innovative solutions for a safer, better world

Gravity plume Length scale

  r 2  η ≈ η 0 exp −      r*    

Plume thickness

Deposit

r* = Q πw fs

Radial distance BUILDING STRONG®

Innovative solutions for a safer, better world

Shallow Water Equation Mass conservation

∂h ∂ + ( uh ) ∂t ∂x

Momentum conservation

∂ ∂  2 1 2 0 ( uh ) +  u h + g ′h  = 2 ∂t ∂x  

Particle conservation

∂ ∂ − w fsφ (φ h ) + ( uφ h ) = ∂t ∂x

BC

u ( 0, t ) = 0 u ( xN , t ) = Fr ( g ′hN )

1 2

h X=0

BUILDING STRONG®

u

hN X=xN

Innovative solutions for a safer, better world

Tribell Shoal, James River

BUILDING STRONG®

Innovative solutions for a safer, better world

TSA018r

TSA017r 200

1

200

2 180 2

4

160

6

140

160

140 3

10

120

Bin

120

Secondary plume

8

Bin

Hourly snapshot of ADCP backscatter

180

100

4

100

80

80 5

12

60

14

40

60

40 6

20 16 TSA019r 400

350

200 300

2

250

200 Progress

100

150

7

0

50

Stripping (very small) 50

100

150 Progress

200

20

0

250

180 4

160

6

140

120

Bin

8 100 10 80 12

60

14

40

20

TSA021r

TSA020r 200

200

16 2 50

100

150

200

250

300 350 Progress

400

450

500

2

0

550

180

180

160

4

160

4

140

140

6

6

100

120

Bin

Bin

120 8

8

100

80

10

80 10

60

60

12 40

12

40

14 20

BUILDING STRONG®

20 14

16

50

100

150

200 250 Progress

300

350

400

450

0

Innovative solutions for a safer, better world 0 500

450

400

350

300

250 Progress

200

150

100

50

Concluding Remarks •New PDFATE Jet plume from DIFCD Axi-symmetric Gravity plume (box model)

•Ongoing effort 2-D shallow water equation Implement stripping function

•Future plan 3 dimensional bedforms Multiphase flows BUILDING STRONG®

Innovative solutions for a safer, better world