Molecular Distances Determined with Resonant ... - Rice University

Report 2 Downloads 65 Views
Article pubs.acs.org/JPCA

Molecular Distances Determined with Resonant Vibrational Energy Transfers Hailong Chen,† Xiewen Wen,† Jiebo Li, and Junrong Zheng* Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States S Supporting Information *

ABSTRACT: In general, intermolecular distances in condensed phases at the angstrom scale are difficult to measure. We were able to do so by using the vibrational energy transfer method, an ultrafast vibrational analogue of Förster resonance energy transfer. The distances among SCN− anions in KSCN crystals and ion clusters of KSCN aqueous solutions were determined with the method. In the crystalline samples, the closest anion distance was determined to be 3.9 ± 0.3 Å, consistent with the XRD result. In the 1.8 and 1 M KSCN aqueous solutions, the anion distances in the ion clusters were determined to be 4.4 ± 0.4 Å. The clustered anion distances in aqueous solutions are very similar to the closest anion distance in the KSCN crystal but significantly shorter than the average anion distance (0.94−1.17 nm) in the aqueous solutions if ion clustering did not occur. The result suggests that ions in the strong electrolyte aqueous solutions can form clusters inside of which they have direct contact with each other.

1. INTRODUCTION Short-ranged transient intermolecular interactions, for example, guest/host interactions, ion/ion interactions, and ion/molecule bindings, play significant roles in chemistry and biology. Electronic energy transfer methods, for example, Förster resonance energy transfer (FRET), are routinely applied to measure the distance between two molecules in many of these interactions.1,2 In these methods, chromophores that can transfer and accept energy in the visible and near-IR frequency range are required to attach to molecules. The chromophores are typically at the size of 1−2 nm or larger, which is not only much larger than many of the intermolecular distances but also can perturb the molecular interactions under investigation. To probe molecular distances at the angstrom scale, what is needed is an ultrafast vibrational analogue of FRET of which the chromophores are simple chemical bonds (1−2 Å). Here, by measuring ultrafast vibrational energy transfers in model systems of KSCN (potassium thiocyanate) crystals and aqueous solutions, we demonstrate that angstrom molecular distances in condensed phases can be determined. In this paper, we first present anisotropy decay and vibrational energy exchange data to show that vibrational energy can transfer resonantly among SCN− anions and nonresonantly from SCN− to S13C15N− with much slower rates in KSCN/KS13C15N mixed © 2014 American Chemical Society

crystals. A kinetic model is then developed to quantitatively analyze the resonant energy transfer data to obtain the resonant energy transfer time between two adjacent anions in the crystals. To convert the energy transfer time into distance, an equation based on the dephasing mechanism and the timedependent Schrodinger equation is derived to correlate the energy transfer time with the energy donor/acceptor coupling strength, which is quantitatively correlated to the donor/ acceptor distance under the dipole/dipole interaction. On the basis of the energy transfer equation and the dipole/dipole interaction equation and the measured energy transfer time, the distance between the two adjacent anions is calculated. The calculated distance is then compared to the distance measured by XRD. Within experimental uncertainty, the two values are the same. The uncertainty introduced by the point dipole assumption used in the method is then calculated based on the monopole theory. It is found that the uncertainty is very small, only ∼1.3%, mainly because the donor/acceptor distance is more than three times larger than the sizes of the donor/ acceptor. After benchmarking the vibrational energy transfer Received: January 17, 2014 Revised: March 17, 2014 Published: March 18, 2014 2463

dx.doi.org/10.1021/jp500586h | J. Phys. Chem. A 2014, 118, 2463−2469

The Journal of Physical Chemistry A

Article

measurements, the nitrile stretch of one anion, for example, SCN−, is excited to its first excited state. The decay of the anisotropy value of this vibrational excitation signal is then monitored in real time. Simultaneous analyses on the anisotropy decays in samples with different mixed KSCN/ KS13C15N ratios quantitatively yield both the resonant energy transfer rate constant and the rotational time constant of the anion. 2.3. Samples. Unless specified, chemicals were purchased from Sigma−Aldrich and used without further purification. KS13C15N was purchased from Cambridge Isotope Laboratory. The samples were thin films of polycrystalline KSCN/ KS13C15N mixed crystals with different molar ratios blended with ∼50 wt % PMMA. The thickness of the sample is estimated to be a few hundred nm based on the CN stretch optical density. An optical image of a sample is provided in Figure S1 in the Supporting Information (SI). The function of PMMA was to suppress scattered light. The samples were placed in a vacuum chamber during measurements. There are four reasons to use KSCN and KS13C15N and KS13CN as model systems: (1) the vibrational lifetimes of the nitrile stretches are relatively long (longer than 30 ps in D2O solutions and even longer in the crystals as included in the SI);4 (2) the transition dipole moments of the nitrile stretches are relatively large (0.3−0.4 D);4 (3) the distance between any two anions in the KSCN crystal is well-characterized with XRD and neutron scattering, which can be used to benchmark the distance determined by the vibrational energy transfer method;7 and (4) the phonon dispersion in the KSCN crystal was wellcharacterized before.8,9 The purpose of using different-isotope-labeled thiocyanate anion mixed samples, for example, a KSCN/KS13C15N mixed crystal with different molar ratios, is 2-fold, (1) to shift the vibrational frequency of the nitrile stretch as the vibrational frequency of the CN stretch is different from that of the 13C15N stretch and (2) to change the number of resonant energy transfer acceptors in the samples without changing the crystalline structure or ion cluster structure because the isotope labeling has negligible effects on the intermolecular interaction between two thiocyanate anions that determines their distance and relative orientation.10

method with the crystalline sample, the method is used to determine the anion distance in the ion clusters of KSCN aqueous solutions. It is found that within experimental uncertainty, the anion distance in the clusters is the same as that in the crystal.

2. EXPERIMENTS AND METHODS 2.1. Laser System. A ps amplifier and a fs amplifier are synchronized with the same seed pulse. The ps amplifier pumps an OPA to produce ∼0.8 ps (vary from 0.7−0.9 ps in different frequencies) mid-IR pulses with a bandwidth of 10−35 cm−1 in a tunable frequency range from 400 to 4000 cm−1 with an energy of 1−40 μJ/pulse (1−10 μJ/pulse for 400−900 cm−1 and >10 μJ/pulse for higher frequencies) at 1 kHz. Light from the fs amplifier is used to generate a high-intensity mid-IR and terahertz supercontinuum pulse with a duration of > 2 ), eqs.S30~32 can be

numerically solved with

p0 (t ) ≈ ∏ j

−2 k0 j t

1+ e 2

−2 k0 j 't

1+ e ∏j ' 2

−2 k0 j t

1 1 1+ e p|| (t ) ≈ + e −2 k⊥t − ∏ 2 2 2 j

p⊥ (t )=

1 1 −2 k⊥t − e , 2 2

eq.S33 −2 k0 j 't

1+ e ∏j ' 2

eq.S34

eq.S35

where kij and kij ' are correlated to each other through eqs.13&14 in the main text.

14

Calculations of clustered anion distances in 1M and 1.8M KSCN aqueous solutions

µ= 0.33D , We have the parameters: n = 1.5 , µ= D A

κ = 2 / 3 (randomized,

because the rotation of anion is faster than the energy transfer) and the dephasing time ( τ=

τ = 0.29 ps

(τ =

1 100 ps ) 2p 18 × 3

for

the

1.8M

solution

and

τ = 0.27 ps

1 100 ps ) for the 1M solution from the energy mismatch dependent 2p 20 × 3

experiments (fig.S6~7) 1,10. For the 1.8 M solution 1 1 2 τ = k β= 2 −2 (2 β ) + τ 18 ps

β=

1 µD µ A κ 3 n 2 4πε 0 rDA

⇒β = 2.3 cm−1

 ⇒ rDA = 4.4 A

For the 1M solution 1 1 2 τ k β= = 2 −2 (2 β ) + τ 15 ps

β=

1 µD µ A κ 3 n 2 4πε 0 rDA

⇒β = 2.5 cm−1

 ⇒ rDA = 4.3 A

 If n = 1.42 is used (averaging the refractive indexes of D 2 O and KSCN), rDA = 4.5 A  are for the 1.8M and 1M solutions respectively. and rDA = 4.4 A

15

0.014

1.0

Normalized Population

Normalized Population

0.012

KSCN KS13C15N

0.8

0.6

(A)

0.4

0.2

0.0

Flowing down Pumping up

0.010 0.008 0.006

(B)

0.004 0.002 0.000 -0.002

0

50

100

150

200

250

0

Waiting Time (ps)

50

100

150

200

250

Waiting Time (ps)

1.2

Normalized Anisotropy

1.0

2:98 50:50 100:0

0.8 0.6 0.4

(C)

0.2 0.0 -0.2 0

10

20

30

40

50

Waiting Time (ps)

Figure S6. Data and calculations of nonresonant [(A) and (B)] energy transfer between SCN- and S13C15N- (SCN-/S13C15N-=1/1) and resonant [(C)] energy transfers among SCN- anions for a 1.8M KSCN aqueous solution from our previous publication.1 Dots are data, and lines are calculations. Calculations for (A) and (B) are with input parameters: (ps −1 ); kSCN − slow 1/ 22 (ps −1 ); kS13C15 N − fast 1/ 2.7 (ps −1 ); kS13C15 N − slow 1/ 29 (ps −1 ); kSCN − fast 1/1.4 = = = = kclu →iso

1/10 (ps −1 ); K=0.55; kSCN − → S13C15 N − 1/160 (ps −1 ); D=0.70 =

with pre-factors of the subgroups and offset of the bi-exponential = ASCN − fast 0.16; = ASCN − slow 0.84;= AS13C15 N − fast 0.22; = AS13C15 N − slow 0.78; = offset 0 . (C) τ or = 4.5 ps is experimentally determined, which is the rotation time of the clustered ions. ntot = 4 , τ = 18 ps . Therefore, for the same number of acceptors, the resonant transfer time is 18/2=9ps, and that for ∆ω = 75 cm −1 is 160ps. Based on eq.9, the dephasing width is determined to be 15.5 cm-1.

16

0.008

KSCN KS13C15N

0.8

Normalized Population

Normalized Population

1.0

0.6

(A)

0.4

0.2

Flowing down Pumping up

0.006

0.004

(B)

0.002

0.000

0.0 -0.002 0

50

100

150

200

250

0

Waiting Time (ps)

50

100

150

200

250

Waiting Time (ps)

1.0

10:90 50:50 100:0

Normalized Anisotropy

0.8

0.6

0.4

(C)

0.2

0.0

-0.2 0

10

20

30

40

50

Waiting Time (ps)

Figure S7. Data and calculations of nonresonant [(A) and (B)] energy transfer between SCN- and S13C15N- (SCN-/S13C15N-=1/1) and resonant [(C)] energy transfers among SCN- anions for a 1.0M KSCN aqueous solution from our previous publication.1 Dots are data, and lines are calculations. Calculations for (A) and (B) are with input parameters: = = = = k SCN − fast 1/1.7 (ps −1 ); k SCN − slow 1/ 21 (ps −1 ); k S13C15 N − fast 1/1.6 (ps −1 ); kS13C15 N − slow 1/ 28 (ps −1 ); kclu →iso

= 1/10 (ps −1 ); K=0.38; kSCN − → S13C15 N − 1/180 (ps −1 ); D=0.70

with pre-factors of the subgroups and offset of the bi-exponential = = = ASCN − fast 0.25; ASCN − slow 0.75;= AS13C15 N − fast 0.21; = AS13C15 N − slow 0.79; offset 0 . (C) τ or = 4.3 ps is experimentally determined, which is the rotation time of the clustered ions. ntot = 3 , τ = 15 ps . Therefore, for the same number of acceptors, the resonant transfer time is 15/1.5=10ps, and that for ∆ω = 75 cm −1 is 180ps. Based on eq.9, the dephasing width is determined to be 15.5 cm-1.

17

0.5

Model

Lorentz

Equation

y = y0 + (2*A/PI)*(w/(4*(x-xc)^ 2 + w^2))

Value

D

Standard Error

y0

-0.01231

4.53192E-4

xc

2063.54727

0.05117

Lorentz

Equation

y = y0 + (2*A/PI)*(w/(4*(x-xc)^ 2 + w^2))

w

32.36957

0.1768

A

23.27113

0.10815

H

0.45768

(A)

0.2

1.58653E-4

Reduced Chi-Sqr

0.4

0.99093

Adj. R-Square

Value

0.3 OD

OD

Model

0.99164

Adj. R-Square

0.3

0.5

1.10401E-4

Reduced Chi-Sqr

0.4

D

(B)

Standard Error

y0

-0.02054

5.38998E-4

xc

2063.76032

0.05248

w

31.73273

0.18054

A

26.40325

0.12735

H

0.5297

0.2

0.1

0.1

0.0

0.0

1900 1950 2000 2050 2100 2150 2200 -1

Wavenumber (cm )

1900 1950 2000 2050 2100 2150 2200 Wavenumber (cm-1)

Figure S8. FTIR spectra of 1M and 1.8M KSCN in D 2 O solutions. The Lorentzian line width for both samples is 32 cm-1, giving the dephasing width 16 cm-1.

18

Calculations of the transition dipole moment of the CN stretch in KSCN crystal The transition dipole moment of the CN stretch was calculated by comparing the FTIR spectra and the 2D-IR signals for both of the CO stretch in the molecule (CH 3 C 5 H 4 )Mn(CO) 3 and the CN stretch in KSCN crystal. Under the same experimental conditions, e.g. the pump intensity, the signal intensities can be expressed as: 2 I FTIR −CO = C1µCO

eq.S36

2 I FTIR −CN = C1µCN

eq.S37

4 I 2 DIR −CO = C2 µCO

eq.S38

4 . I 2 DIR −CN = C2 µCN

eq.S39

It is based the fact that, FTIR measurement is a linear spectroscopy, while 2D-IR method measures the 3rd order nonlinear response. From eq.S36-S39, we have

/I I µCN = 2 DIR −CN 2 DIR −CO . I FTIR −CN / I FTIR −CO µCO

eq.S40

The transition dipole moment of the CO stretch was obtained by measuring the FTIR spectra of (CH 3 C 5 H 4 )Mn(CO) 3 in CCl 4 solution with the concentration 0.029 M and the path length 25 m m (fig.S9A), and using the expression = µ 2 9.186 ×10−3 n ∫ [ε (n ) / n ]dn ,

eq.S41

where µ is in the unit of Debye, ν is the wavenumber in cm −1 , εν (  ) is the molar decadic extinction coefficient in L/(mol cm) at wavenumberν , and n is the refractive index of the media

11

. For CCl 4 solution at around 2022 cm −1 , n = 1.44 .

From the FTIR data and these parameters, we got µCO = 0.45 D . The intensity ratios in eq. S40 were obtained from the FTIR and 2D-IR measurements for two samples. We got I FTIR −CN / I FTIR −CO = 0.48 / 0.44 (fig.S9A&B), and I 2 DIR −CN / I 2 DIR −CO = 0.032 / 0.067 for the intensity of red peak (fig.S10A&B)

I 2 DIR −CN / I 2 DIR −CO = 0.029 / 0.052 for the intensity of blue peak (fig.S10C&D). By inserting all these ratios into eq.S40, we finally got the transition dipole moment of the CN stretch µCN = 0.30 D (using red peak), or µCN = 0.32 D (using blue peak). As a result, we chose µCN = 0.31D for the calculations in this work. 19

0.5 0.4

0.5

(A)

0.4

0.3

(B)

OD

OD

0.3

0.2

0.2

0.1

0.1

0.0

0.0

1960 1980 2000 2020 2040 2060 2080

1900 1950 2000 2050 2100 2150 2200

Wavenumber (cm-1)

Wavenumber (cm-1)

Figure S9. FTIR spectra of (A) (CH 3 C 5 H 4 )Mn(CO) 3 in CCl 4 solution with the concentration 0.029 M and the path length 25 m m , and (B) the thin film of polycrystalline KSCN crystals blended with ~50 wt% PMMA.

Population

0.06

(A)

0.03

0.04

0.02

0.02

0.01

0.00

0.00 -20

0

20

40

60

0.02

-20

0

20

40

60

0

20

40

60

0.01

(C)

(D)

0.00

0.00

-0.02

-0.01

-0.02

-0.04

-0.06

(B)

-0.03 -20

0

20

40

60

-20

Time Delay (ps)

Figure S10. Waiting time dependent intensities of the (A) red peak for (CH 3 C 5 H 4 )Mn(CO) 3 solution, (B) red peak for KSCN crystal, (C) blue peak for (CH 3 C 5 H 4 )Mn(CO) 3 solution, and (D) blue peak for KSCN crystal, all of which were measured by 2D-IR method, with the pump at 2022 cm-1 for the (CH 3 C 5 H 4 )Mn(CO) 3 solution and 2050 cm-1 for the KSCN crystal.

20

The derivation of the relation between the one-way energy transfer rate and the total energy transfer rate For the energy transfer between a pair of donor and acceptor, without considering the vibrational relaxations, we have the rate equations

d D(t ) = −k DA D(t ) + k AD A(t ) dt

eq.S42

d A(t ) = −k AD A(t ) + k DA D(t ) , dt

eq.S43

where D(t ) and A(t ) are the populations of the exited state for the donor and acceptor, respectively, and k DA (or k AD ) is the energy transfer rate from the donor (or acceptor) to the acceptor (or the donor). For both of the donor and the acceptor are identical SCN- anions, we chose = k k DA + k AD to denote the one-way energy transfer rate. Considering the initial conditions, D(0) = 1 and A(0) = 0 . We get the solutions

= D(t )

1 − kt 1 e + 2 2

1 1 A(t ) = − e − kt + . 2 2 Therefore, the total energy transfer rate is = k k DA + k AD , and k DA = e

eq.S44

eq.S45 DωDA RT

k AD .

21

Energy transfer dephasing time of the KSCN crystalline samples The energy transfer dephasing time in eq.9 is a situation dependent parameter. If the dephasings of the donor and acceptor are uncorrelated, the energy transfer dephasing time (in terms of line width) is the convoluted line width of the donor and acceptor. For Lorentzian lineshapes, it is the sum of both donor and acceptor line widths, which determines the fastest value of possible energy transfer dephasing time. In many electronic energy transfers, such a dephasing time is assumed as the donor and the acceptor are several nm away so that it is reasonable to assume that the donor/acceptor dephasings are uncorrelated. For vibrational energy transfers, such an assumption may not be valid as the majority of experimentally measurable intermolecular vibrational energy transfers occur within distances smaller than 1 nm. Within such short distances, a molecular event which causes the dephasing of one molecule will inevitably affect the vibration of another molecule nearby. Therefore, the dephasings of the donor and the acceptor are correlated. The result of such a correlation is that the energy transfer dephasing time must be longer than that determined by the donor/acceptor convoluted line width. How long the energy transfer dephasing time can be is determined by how the dephasings of donor and acceptor are correlated. Experimentally, the energy transfer dephasing time can be obtained from the energy mismatch ∆ω dependent energy transfers based on eq.9. In principle, if we know the energy transfer rate constants for two energy mismatches, mathematically we can derive the coupling strength and the dephasing time from eq.9. The condition for such a treatment is that the nonresonant energy transfer through the dephasing mechanism (eq.9) is much faster than that of the phonon compensation mechanism 12,13. We expect that the condition can be fulfilled for most liquid solutions with relatively small energy mismatches ( ∆ω < RT ) where the dephasing is fast and well defined phonon motions are scarce. The condition can be invalid for some solid samples where the dephasing is relatively slow and the density of phonons with energy the same as the donor/acceptor mismatch is high.

22

w3 (cm-1)

(A) 50 ps

0 ps

2060

100 ps a

d 2020

b

c

1980 2000

2040

2080 -1

ω1 (cm )

1.0

1.0

(B)

(C)

0.8

Intensity (a.u.)

Intensity (a.u.)

0.8

0.6

0.4

0.2

0.6

0.4

0.2

0.0

0.0 0

200

400

600

Delay (ps)

800

1000

0

200

400

600

800

1000

Delay (ps)

Figure S11. (A):Waiting time dependent vibrational energy exchange 2D IR spectra of a KSCN/KS13CN=1/1 mixed crystal at room temperature. The growth of cross peaks indicates how fast the vibrational energy exchange proceeds between SCN- and S13CN-. (B)-(C) Waiting time dependent normalized intensities of peaks a, b, c, and d. Dots are experimental data, and curves are calculations based on the energy exchange kinetic model and experimentally measured vibrational lifetimes.Calculation parameters are pfa=0.081; pfb=0.022; kfa=1/1.05; kfb=1/0.73; ka=1/589; kb=1/688; kab=1/96; and kba=1/123. The KSCN crystalline sample with a mismatch 75 cm-1 is such an example. As analyzed in the main text, in the KSCN/KS13C15N=1/1 sample, the energy transfer

1 time constant ( ) from SCN to S13C15N ( ∆ω = 75 cm −1 ) is 99ps, and that from SCN k to SCN ( ∆ω = 0 cm −1 ) is 3.6ps. As shown in fig.S11, in the KSCN/KS13CN=1/1

1 sample, the energy transfer time constant ( ) from SCN to S13CN ( ∆ω = 50 cm −1 ) is k 96ps. The results with three different energy mismatches cannot be described by eq.9 as it predicts that the energy transfer with ∆ω = 50 cm −1 should be 100% faster than that with ∆ω = 75 cm −1 . The essential reason for the energy transfer from SCN to S13C15N is much faster than the prediction from eq.9 is that the measured energy transfer is from the phonon compensation mechanism. As we can see from both 23

Raman and Neutron scattering data, the phonon densities at ~ 75 cm-1 are much higher than those at around 50 cm-1. Therefore, the energy transfer dephasing time can only be calculated from the results of samples with ∆ω = 50 cm −1 and ∆ω = 0 cm −1 . Calculations show that the dephasing time is 8 cm-1 (in terms of line width), narrower than the convoluated line width (10 cm-1). However, 8 cm-1 is only the fast limit of the dephasing time, as we don’t know how much portion of the measured ∆ω = 50 cm −1 energy transfer is from the energy compensation mechanism. To test the uncertainty range of determined distance caused by this dephasing time uncertainty, we varied the dephasing time from 3 cm-1 to 8 cm-1, and found that the calculated distance between two closest anions varies from 4.4 to 3.9 angstroms. The determined values are within experimental uncertainty (~10% of the actual distance 4 angstroms). 1.0

KSCN/KS13C15N=1/1 RT KSCN/KS13CN=1/1 RT

200000 150000

0.8 G(E) (Normalized)

Intensity (counts)

250000

(A)

100000 50000 0

0.6

(B)

0.4 0.2 0.0

25

50

75

100

Frequency (cm-1)

125

150

50

100 E (cm-1)

150

Figure S12. (A) Raman spectra of KSCN/KS13C15N=1/1 and KSCN/KS13CN=1/1 samples at room temperature; (B) Neutron scattering data at 10K from literature 14.

24

Table of parameters of SCN- in KSCN crystal Table S2. Calculated parameters of every SCN- in KSCN crystal (3*3*3, 500 anions). The orientation factors were calculated based on eq.S9, with A∞ = 0.7 .The coupling

µ= 0.31D . Since the constants were calculated based on eq.10, with n = 1.5 , µ= D A energy transfer rate for the donor to each of the acceptors is proportional to

β 2 / [(2β ) 2 + τ −2 ] (see eq.9), the 1/k ET for every SCN- can be calculated by distributing the total energy transfer rate 1/1.8ps, which was obtained from experimental result, with τ −1 = 8 cm −1 . No . 0 2 4 6 8 10 12 14 16 18 20 22 24

Distanc e Orientatio (Å n factor ) 0.000 0.000 4.017 0.378 4.026 0.706 4.802 0.477 5.576 0.597 6.160 0.740 6.451 0.728 6.532 0.950 6.673 0.626 6.715 0.672 7.517 1.182 7.543 0.899 7.789 0.991

Coupling constant (cm-1)

1/k ET

No .

Distanc e (Å)

Orientatio n factor

Coupling constant (cm-1)

1/k ET

0.000 1.252 2.324 0.926 0.740 0.681 0.583 0.732 0.452 0.477 0.598 0.450 0.451

0 29 8 53 82 97 133 84 220 198 126 222 222

1 3 5 7 9 11 13 15 17 19 21 23 25

4.017 4.026 4.802 5.576 6.160 6.451 6.532 6.673 6.715 7.517 7.543 7.789 7.789

0.378 0.706 0.477 0.597 0.740 0.728 0.950 0.626 0.672 1.182 0.899 0.991 0.991

1.252 2.324 0.926 0.740 0.681 0.583 0.732 0.452 0.477 0.598 0.450 0.451 0.451

222

27

8.550

0.385

0.132

29

8.550

0.385

0.132

31

8.932

1.139

0.343

33

9.338

0.523

0.138

35

9.338

0.523

0.138

37

9.380

0.417

0.109

39

9.380

0.417

0.109

26

7.789

0.991

0.451

28

8.550

0.385

0.132

30

8.550

0.385

0.132

32

8.932

1.139

0.343

34

9.338

0.523

0.138

36

9.338

0.523

0.138

38

9.380

0.417

0.109

2.57E+0 3 2.57E+0 3 3.82E+0 2 2.37E+0 3 2.37E+0 3 3.82E+0

25

29 8 53 82 97 133 84 220 198 126 222 222 222 2.57E+0 3 2.57E+0 3 3.82E+0 2 2.37E+0 3 2.37E+0 3 3.82E+0 3 3.82E+0

40

9.380

0.417

0.109

42

9.467

1.784

0.452

44

9.467

1.784

0.452

46

9.507

1.054

0.263

48

9.731

0.932

0.217

50

9.861

0.844

0.189

52

10.071

0.507

0.107

54

10.071

0.507

0.107

56

10.099

0.492

0.103

58

10.099

0.492

0.103

60

10.315

1.253

0.245

62

10.467

0.715

0.134

64

10.761

0.755

0.130

66

11.012

0.990

0.159

68

11.150

0.528

0.082

70

11.150

0.528

0.082

72

11.399

0.333

0.048

74

11.620

1.146

0.157

76

11.699

0.763

0.102

78

11.911

0.449

0.057

80

12.104

0.874

0.106

3 3.82E+0 3 2.21E+0 2 2.21E+0 2 6.49E+0 2 9.54E+0 2 1.26E+0 3 3.96E+0 3 3.96E+0 3 4.27E+0 3 4.27E+0 3 7.49E+0 2 2.52E+0 3 2.66E+0 3 1.78E+0 3 6.74E+0 3 6.74E+0 3 1.93E+0 4 1.83E+0 3 4.30E+0 3 1.38E+0 4 4.02E+0 3

41

9.467

1.784

0.452

43

9.467

1.784

0.452

45

9.507

1.054

0.263

47

9.731

0.932

0.217

49

9.861

0.844

0.189

51

10.071

0.507

0.107

53

10.071

0.507

0.107

55

10.099

0.492

0.103

57

10.099

0.492

0.103

59

10.315

1.253

0.245

61

10.467

0.715

0.134

63

10.761

0.755

0.130

65

11.012

0.990

0.159

67

11.150

0.528

0.082

69

11.150

0.528

0.082

71

11.399

0.333

0.048

73

11.620

1.146

0.157

75

11.699

0.763

0.102

77

11.911

0.449

0.057

79

12.104

0.874

0.106

81

12.104

0.874

0.106

26

3 2.21E+0 2 2.21E+0 2 6.49E+0 2 9.54E+0 2 1.26E+0 3 3.96E+0 3 3.96E+0 3 4.27E+0 3 4.27E+0 3 7.49E+0 2 2.52E+0 3 2.66E+0 3 1.78E+0 3 6.74E+0 3 6.74E+0 3 1.93E+0 4 1.83E+0 3 4.30E+0 3 1.38E+0 4 4.02E+0 3 4.02E+0 3

82

12.104

0.874

0.106

84

12.104

0.874

0.106

86

12.104

0.874

0.106

88

12.136

0.726

0.087

90

12.136

0.726

0.087

92

12.262

0.446

0.052

94

12.318

0.858

0.099

96

12.467

0.852

0.095

98

12.508

0.424

0.047

12.625

1.249

0.133

12.667

1.248

0.132

12.778

0.866

0.089

12.778

0.866

0.089

12.855

1.242

0.126

12.995

1.579

0.155

13.050

0.472

0.046

13.208

0.496

0.046

13.208

0.496

0.046

13.346

0.626

0.057

13.348

0.731

0.066

13.348

0.731

0.066

13.430

0.672

0.060

10 0 10 2 10 4 10 6 10 8 11 0 11 2 11 4 11 6 11 8 12 0 12 2 12 4

4.02E+0 3 4.02E+0 3 4.02E+0 3 5.92E+0 3 5.92E+0 3 1.67E+0 4 4.63E+0 3 5.05E+0 3 2.08E+0 4 2.53E+0 3 2.59E+0 3 5.67E+0 3 5.67E+0 3 2.85E+0 3 1.89E+0 3 2.17E+0 4 2.10E+0 4 2.10E+0 4 1.41E+0 4 1.03E+0 4 1.03E+0 4 1.27E+0 4

83

12.104

0.874

0.106

85

12.104

0.874

0.106

87

12.136

0.726

0.087

89

12.136

0.726

0.087

91

12.262

0.446

0.052

93

12.318

0.858

0.099

95

12.467

0.852

0.095

97

12.508

0.424

0.047

99

12.625

1.249

0.133

12.667

1.248

0.132

12.778

0.866

0.089

12.778

0.866

0.089

12.855

1.242

0.126

12.995

1.579

0.155

13.050

0.472

0.046

13.208

0.496

0.046

13.208

0.496

0.046

13.346

0.626

0.057

13.348

0.731

0.066

13.348

0.731

0.066

13.430

0.672

0.060

13.438

0.523

0.046

10 1 10 3 10 5 10 7 10 9 11 1 11 3 11 5 11 7 11 9 12 1 12 3 12 5

27

4.02E+0 3 4.02E+0 3 5.92E+0 3 5.92E+0 3 1.67E+0 4 4.63E+0 3 5.05E+0 3 2.08E+0 4 2.53E+0 3 2.59E+0 3 5.67E+0 3 5.67E+0 3 2.85E+0 3 1.89E+0 3 2.17E+0 4 2.10E+0 4 2.10E+0 4 1.41E+0 4 1.03E+0 4 1.03E+0 4 1.27E+0 4 2.10E+0 4

12 6 12 8 13 0 13 2 13 4 13 6 13 8 14 0 14 2 14 4 14 6 14 8 15 0 15 2 15 4 15 6 15 8 16 0 16 2 16 4 16 6 16 8

13.438

0.523

0.046

13.854

0.862

0.070

13.854

0.862

0.070

13.913

0.573

0.046

13.937

1.229

0.098

13.937

1.229

0.098

14.177

0.413

0.031

14.177

0.413

0.031

14.280

0.795

0.059

14.280

0.795

0.059

14.439

0.447

0.032

14.527

0.453

0.032

14.612

0.875

0.060

14.859

0.971

0.064

14.859

0.971

0.064

14.940

1.527

0.098

14.940

1.527

0.098

14.945

0.806

0.052

14.985

0.861

0.055

14.996

1.556

0.099

14.996

1.556

0.099

15.007

0.508

0.032

2.10E+0 4 9.30E+0 3 9.30E+0 3 2.16E+0 4 4.74E+0 3 4.74E+0 3 4.65E+0 4 4.65E+0 4 1.31E+0 4 1.31E+0 4 4.42E+0 4 4.47E+0 4 1.24E+0 4 1.11E+0 4 1.11E+0 4 4.66E+0 3 4.66E+0 3 1.67E+0 4 1.49E+0 4 4.59E+0 3 4.59E+0 3 4.32E+0 4

12 7 12 9 13 1 13 3 13 5 13 7 13 9 14 1 14 3 14 5 14 7 14 9 15 1 15 3 15 5 15 7 15 9 16 1 16 3 16 5 16 7 16 9

13.854

0.862

0.070

13.854

0.862

0.070

13.913

0.573

0.046

13.937

1.229

0.098

13.937

1.229

0.098

14.177

0.413

0.031

14.177

0.413

0.031

14.280

0.795

0.059

14.280

0.795

0.059

14.439

0.447

0.032

14.527

0.453

0.032

14.612

0.875

0.060

14.859

0.971

0.064

14.859

0.971

0.064

14.940

1.527

0.098

14.940

1.527

0.098

14.945

0.806

0.052

14.985

0.861

0.055

14.996

1.556

0.099

14.996

1.556

0.099

15.007

0.508

0.032

15.086

0.899

0.056 28

9.30E+0 3 9.30E+0 3 2.16E+0 4 4.74E+0 3 4.74E+0 3 4.65E+0 4 4.65E+0 4 1.31E+0 4 1.31E+0 4 4.42E+0 4 4.47E+0 4 1.24E+0 4 1.11E+0 4 1.11E+0 4 4.66E+0 3 4.66E+0 3 1.67E+0 4 1.49E+0 4 4.59E+0 3 4.59E+0 3 4.32E+0 4 1.42E+0 4

17 0 17 2 17 4 17 6 17 8 18 0 18 2 18 4 18 6 18 8 19 0 19 2 19 4 19 6 19 8 20 0 20 2 20 4 20 6 20 8 21 0 21 2

15.086

0.899

0.056

15.152

0.825

0.051

15.285

1.285

0.077

15.330

0.467

0.028

15.330

0.467

0.028

15.403

0.485

0.029

15.403

0.485

0.029

15.410

0.477

0.028

15.410

0.477

0.028

15.431

0.428

0.025

15.431

0.428

0.025

15.614

0.344

0.019

15.614

0.344

0.019

15.990

0.588

0.031

16.015

0.886

0.046

16.059

0.726

0.038

16.059

0.726

0.038

16.083

0.359

0.019

16.083

0.359

0.019

16.253

0.573

0.029

16.407

1.656

0.081

16.473

0.488

0.023

1.42E+0 4 1.74E+0 4 7.55E+0 3 5.81E+0 4 5.81E+0 4 5.54E+0 4 5.54E+0 4 5.74E+0 4 5.74E+0 4 7.19E+0 4 7.19E+0 4 1.20E+0 5 1.20E+0 5 4.72E+0 4 2.10E+0 4 3.18E+0 4 3.18E+0 4 1.31E+0 5 1.31E+0 5 5.49E+0 4 6.95E+0 3 8.21E+0 4

17 1 17 3 17 5 17 7 17 9 18 1 18 3 18 5 18 7 18 9 19 1 19 3 19 5 19 7 19 9 20 1 20 3 20 5 20 7 20 9 21 1 21 3

15.152

0.825

0.051

15.285

1.285

0.077

15.330

0.467

0.028

15.330

0.467

0.028

15.403

0.485

0.029

15.403

0.485

0.029

15.410

0.477

0.028

15.410

0.477

0.028

15.431

0.428

0.025

15.431

0.428

0.025

15.614

0.344

0.019

15.614

0.344

0.019

15.990

0.588

0.031

16.015

0.886

0.046

16.059

0.726

0.038

16.059

0.726

0.038

16.083

0.359

0.019

16.083

0.359

0.019

16.253

0.573

0.029

16.407

1.656

0.081

16.473

0.488

0.023

16.496

0.732

0.035 29

1.74E+0 4 7.55E+0 3 5.81E+0 4 5.81E+0 4 5.54E+0 4 5.54E+0 4 5.74E+0 4 5.74E+0 4 7.19E+0 4 7.19E+0 4 1.20E+0 5 1.20E+0 5 4.72E+0 4 2.10E+0 4 3.18E+0 4 3.18E+0 4 1.31E+0 5 1.31E+0 5 5.49E+0 4 6.95E+0 3 8.21E+0 4 3.67E+0 4

21 4 21 6 21 8 22 0 22 2 22 4 22 6 22 8 23 0 23 2 23 4 23 6 23 8 24 0 24 2 24 4 24 6 24 8 25 0 25 2 25 4 25 6

16.496

0.732

0.035

16.496

0.732

0.035

16.513

0.722

0.034

16.513

0.722

0.034

16.528

0.789

0.038

16.560

0.570

0.027

16.678

0.937

0.043

16.678

0.937

0.043

16.704

0.577

0.027

16.736

1.099

0.050

16.736

1.099

0.050

16.736

1.099

0.050

16.736

1.099

0.050

16.787

1.124

0.051

16.787

1.124

0.051

16.787

1.124

0.051

16.787

1.124

0.051

16.796

0.476

0.022

16.796

0.476

0.022

16.812

0.738

0.033

17.368

1.208

0.050

17.551

0.840

0.033

3.67E+0 4 3.67E+0 4 3.80E+0 4 3.80E+0 4 3.20E+0 4 6.20E+0 4 2.40E+0 4 2.40E+0 4 6.38E+0 4 1.78E+0 4 1.78E+0 4 1.78E+0 4 1.78E+0 4 1.73E+0 4 1.73E+0 4 1.73E+0 4 1.73E+0 4 9.67E+0 4 9.67E+0 4 4.04E+0 4 1.84E+0 4 4.04E+0 4

21 5 21 7 21 9 22 1 22 3 22 5 22 7 22 9 23 1 23 3 23 5 23 7 23 9 24 1 24 3 24 5 24 7 24 9 25 1 25 3 25 5 25 7

16.496

0.732

0.035

16.513

0.722

0.034

16.513

0.722

0.034

16.528

0.789

0.038

16.560

0.570

0.027

16.678

0.937

0.043

16.678

0.937

0.043

16.704

0.577

0.027

16.736

1.099

0.050

16.736

1.099

0.050

16.736

1.099

0.050

16.736

1.099

0.050

16.787

1.124

0.051

16.787

1.124

0.051

16.787

1.124

0.051

16.787

1.124

0.051

16.796

0.476

0.022

16.796

0.476

0.022

16.812

0.738

0.033

16.934

1.320

0.058

17.551

0.840

0.033

17.551

0.840

0.033 30

3.67E+0 4 3.80E+0 4 3.80E+0 4 3.20E+0 4 6.20E+0 4 2.40E+0 4 2.40E+0 4 6.38E+0 4 1.78E+0 4 1.78E+0 4 1.78E+0 4 1.78E+0 4 1.73E+0 4 1.73E+0 4 1.73E+0 4 1.73E+0 4 9.67E+0 4 9.67E+0 4 4.04E+0 4 1.32E+0 4 4.04E+0 4 4.04E+0 4

25 8 26 0 26 2 26 4 26 6 26 8 27 0 27 2 27 4 27 6 27 8 28 0 28 2 28 4 28 6 28 8 29 0 29 2 29 4 29 6 29 8 30 0

17.551

0.840

0.033

17.810

0.450

0.017

17.810

0.450

0.017

17.810

0.450

0.017

17.810

0.450

0.017

17.824

0.590

0.022

17.824

0.590

0.022

17.832

0.475

0.018

17.832

0.475

0.018

18.091

0.884

0.032

18.111

1.258

0.046

18.184

1.539

0.055

18.275

0.526

0.019

18.275

0.526

0.019

18.291

0.713

0.025

18.291

0.713

0.025

18.300

0.462

0.016

18.371

0.502

0.017

18.371

0.502

0.017

18.394

0.874

0.030

18.538

1.122

0.038

18.639

0.908

0.030

4.04E+0 4 1.54E+0 5 1.54E+0 5 1.54E+0 5 1.54E+0 5 9.00E+0 4 9.00E+0 4 1.39E+0 5 1.39E+0 5 4.39E+0 4 2.18E+0 4 1.49E+0 4 1.31E+0 5 1.31E+0 5 7.19E+0 4 7.19E+0 4 1.72E+0 5 1.49E+0 5 1.49E+0 5 4.95E+0 4 3.15E+0 4 4.97E+0 4

25 9 26 1 26 3 26 5 26 7 26 9 27 1 27 3 27 5 27 7 27 9 28 1 28 3 28 5 28 7 28 9 29 1 29 3 29 5 29 7 29 9 30 1

17.810

0.450

0.017

17.810

0.450

0.017

17.810

0.450

0.017

17.810

0.450

0.017

17.824

0.590

0.022

17.824

0.590

0.022

17.832

0.475

0.018

17.832

0.475

0.018

18.091

0.884

0.032

18.111

1.258

0.046

18.184

1.539

0.055

18.275

0.526

0.019

18.275

0.526

0.019

18.291

0.713

0.025

18.291

0.713

0.025

18.300

0.462

0.016

18.371

0.502

0.017

18.371

0.502

0.017

18.394

0.874

0.030

18.538

1.122

0.038

18.639

0.908

0.030

18.678

0.487

0.016 31

1.54E+0 5 1.54E+0 5 1.54E+0 5 1.54E+0 5 9.00E+0 4 9.00E+0 4 1.39E+0 5 1.39E+0 5 4.39E+0 4 2.18E+0 4 1.49E+0 4 1.31E+0 5 1.31E+0 5 7.19E+0 4 7.19E+0 4 1.72E+0 5 1.49E+0 5 1.49E+0 5 4.95E+0 4 3.15E+0 4 4.97E+0 4 1.75E+0 5

30 2 30 4 30 6 30 8 31 0 31 2 31 4 31 6 31 8 32 0 32 2 32 4 32 6 32 8 33 0 33 2 33 4 33 6 33 8 34 0 34 2 34 4

18.678

0.487

0.016

18.678

0.487

0.016

18.800

1.089

0.035

18.934

1.784

0.056

18.934

1.784

0.056

18.935

1.038

0.033

18.998

0.871

0.027

19.042

0.564

0.018

19.042

0.564

0.018

19.243

0.531

0.016

19.279

0.585

0.018

19.279

0.585

0.018

19.373

0.838

0.025

19.476

0.883

0.026

19.570

0.993

0.028

19.597

0.353

0.010

19.619

1.097

0.031

19.619

1.097

0.031

19.626

0.580

0.016

19.797

0.718

0.020

19.797

0.718

0.020

20.051

0.383

0.010

1.75E+0 5 1.75E+0 5 3.63E+0 4 1.41E+0 4 1.41E+0 4 4.18E+0 4 6.05E+0 4 1.47E+0 5 1.47E+0 5 1.76E+0 5 1.47E+0 5 1.47E+0 5 7.35E+0 4 6.84E+0 4 5.56E+0 4 4.43E+0 5 4.63E+0 4 4.63E+0 4 1.66E+0 5 1.14E+0 5 1.14E+0 5 4.32E+0 5

30 3 30 5 30 7 30 9 31 1 31 3 31 5 31 7 31 9 32 1 32 3 32 5 32 7 32 9 33 1 33 3 33 5 33 7 33 9 34 1 34 3 34 5

18.678

0.487

0.016

18.800

1.089

0.035

18.908

0.331

0.011

18.934

1.784

0.056

18.934

1.784

0.056

18.935

1.038

0.033

19.042

0.564

0.018

19.042

0.564

0.018

19.090

0.847

0.026

19.243

0.531

0.016

19.279

0.585

0.018

19.279

0.585

0.018

19.373

0.838

0.025

19.570

0.993

0.028

19.570

0.880

0.025

19.619

1.097

0.031

19.619

1.097

0.031

19.626

0.580

0.016

19.797

0.718

0.020

19.797

0.718

0.020

19.947

0.680

0.018

20.051

0.383

0.010 32

1.75E+0 5 3.63E+0 4 4.06E+0 5 1.41E+0 4 1.41E+0 4 4.18E+0 4 1.47E+0 5 1.47E+0 5 6.59E+0 4 1.76E+0 5 1.47E+0 5 1.47E+0 5 7.35E+0 4 5.56E+0 4 7.08E+0 4 4.63E+0 4 4.63E+0 4 1.66E+0 5 1.14E+0 5 1.14E+0 5 1.33E+0 5 4.32E+0 5

34 6 34 8 35 0 35 2 35 4 35 6 35 8 36 0 36 2 36 4 36 6 36 8 37 0 37 2 37 4 37 6 37 8 38 0 38 2 38 4 38 6 38 8

20.139

0.705

0.019

20.142

0.507

0.013

20.142

0.507

0.013

20.162

0.703

0.018

20.198

0.492

0.013

20.198

0.492

0.013

20.203

0.416

0.011

20.203

0.416

0.011

20.291

0.509

0.013

20.291

0.509

0.013

20.381

0.899

0.023

20.381

0.899

0.023

20.381

1.453

0.037

20.381

1.453

0.037

20.441

0.779

0.020

20.450

0.805

0.020

20.702

0.369

0.009

20.882

0.621

0.015

21.082

1.000

0.023

21.182

0.456

0.010

21.232

0.552

0.012

21.232

0.552

0.012

1.31E+0 5 2.54E+0 5 2.54E+0 5 1.33E+0 5 2.73E+0 5 2.73E+0 5 3.83E+0 5 3.83E+0 5 2.63E+0 5 2.63E+0 5 8.66E+0 4 8.66E+0 4 3.31E+0 4 3.31E+0 4 1.17E+0 5 1.10E+0 5 5.65E+0 5 2.10E+0 5 8.57E+0 4 4.24E+0 5 2.93E+0 5 2.93E+0 5

34 7 34 9 35 1 35 3 35 5 35 7 35 9 36 1 36 3 36 5 36 7 36 9 37 1 37 3 37 5 37 7 37 9 38 1 38 3 38 5 38 7 38 9

20.142

0.507

0.013

20.142

0.507

0.013

20.162

0.703

0.018

20.198

0.492

0.013

20.198

0.492

0.013

20.203

0.416

0.011

20.203

0.416

0.011

20.291

0.509

0.013

20.291

0.509

0.013

20.381

0.899

0.023

20.381

0.899

0.023

20.381

1.453

0.037

20.381

1.453

0.037

20.441

0.779

0.020

20.450

0.805

0.020

20.522

0.403

0.010

20.702

0.369

0.009

20.943

0.632

0.015

21.082

1.000

0.023

21.182

0.456

0.010

21.232

0.552

0.012

21.232

0.552

0.012 33

2.54E+0 5 2.54E+0 5 1.33E+0 5 2.73E+0 5 2.73E+0 5 3.83E+0 5 3.83E+0 5 2.63E+0 5 2.63E+0 5 8.66E+0 4 8.66E+0 4 3.31E+0 4 3.31E+0 4 1.17E+0 5 1.10E+0 5 4.48E+0 5 5.65E+0 5 2.06E+0 5 8.57E+0 4 4.24E+0 5 2.93E+0 5 2.93E+0 5

39 0 39 2 39 4 39 6 39 8 40 0 40 2 40 4 40 6 40 8 41 0 41 2 41 4 41 6 41 8 42 0 42 2 42 4 42 6 42 8 43 0 43 2

21.232

0.552

0.012

21.232

0.552

0.012

21.236

0.853

0.019

21.244

0.463

0.010

21.244

0.463

0.010

21.272

0.564

0.013

21.272

0.564

0.013

21.272

0.564

0.013

21.272

0.564

0.013

21.279

0.426

0.009

21.279

0.426

0.009

21.498

1.591

0.034

21.505

0.648

0.014

21.580

0.378

0.008

21.616

0.716

0.015

21.797

0.737

0.015

21.797

0.737

0.015

21.983

0.725

0.015

22.116

0.852

0.017

22.378

0.523

0.010

22.508

0.468

0.009

22.679

0.799

0.015

2.93E+0 5 2.93E+0 5 1.23E+0 5 4.18E+0 5 4.18E+0 5 2.84E+0 5 2.84E+0 5 2.84E+0 5 2.84E+0 5 5.00E+0 5 5.00E+0 5 3.81E+0 4 2.30E+0 5 6.89E+0 5 1.94E+0 5 1.93E+0 5 1.93E+0 5 2.10E+0 5 1.57E+0 5 4.49E+0 5 5.80E+0 5 2.08E+0 5

39 1 39 3 39 5 39 7 39 9 40 1 40 3 40 5 40 7 40 9 41 1 41 3 41 5 41 7 41 9 42 1 42 3 42 5 42 7 42 9 43 1 43 3

21.232

0.552

0.012

21.232

0.552

0.012

21.244

0.463

0.010

21.244

0.463

0.010

21.272

0.564

0.013

21.272

0.564

0.013

21.272

0.564

0.013

21.272

0.564

0.013

21.279

0.426

0.009

21.279

0.426

0.009

21.382

0.862

0.019

21.498

1.591

0.034

21.505

0.648

0.014

21.580

0.378

0.008

21.616

0.716

0.015

21.797

0.737

0.015

21.797

0.737

0.015

22.116

0.852

0.017

22.175

0.712

0.014

22.401

0.472

0.009

22.589

0.444

0.008

22.679

0.799

0.015 34

2.93E+0 5 2.93E+0 5 4.18E+0 5 4.18E+0 5 2.84E+0 5 2.84E+0 5 2.84E+0 5 2.84E+0 5 5.00E+0 5 5.00E+0 5 1.26E+0 5 3.81E+0 4 2.30E+0 5 6.89E+0 5 1.94E+0 5 1.93E+0 5 1.93E+0 5 1.57E+0 5 2.29E+0 5 5.55E+0 5 6.57E+0 5 2.08E+0 5

43 4 43 6 43 8 44 0 44 2 44 4 44 6 44 8 45 0 45 2 45 4 45 6 45 8 46 0 46 2 46 4 46 6 46 8 47 0 47 2 47 4 47 6

22.810

0.744

0.013

22.924

0.472

0.008

22.924

0.472

0.008

23.005

0.755

0.013

23.144

0.577

0.010

23.351

0.454

0.008

23.556

0.890

0.015

23.571

0.817

0.013

23.571

0.817

0.013

23.710

0.526

0.008

23.839

0.892

0.014

23.979

0.619

0.010

23.999

1.160

0.018

24.209

0.899

0.014

24.209

0.899

0.014

24.209

0.874

0.013

24.209

0.874

0.013

24.259

0.616

0.009

24.466

0.499

0.007

24.480

0.473

0.007

24.754

0.688

0.010

24.890

0.537

0.007

2.49E+0 5 6.36E+0 5 6.36E+0 5 2.54E+0 5 4.51E+0 5 7.68E+0 5 2.11E+0 5 2.51E+0 5 2.51E+0 5 6.28E+0 5 2.25E+0 5 4.85E+0 5 1.39E+0 5 2.43E+0 5 2.43E+0 5 2.57E+0 5 2.57E+0 5 5.25E+0 5 8.40E+0 5 9.41E+0 5 4.75E+0 5 8.06E+0 5

43 5 43 7 43 9 44 1 44 3 44 5 44 7 44 9 45 1 45 3 45 5 45 7 45 9 46 1 46 3 46 5 46 7 46 9 47 1 47 3 47 5 47 7

22.810

0.744

0.013

22.924

0.472

0.008

22.924

0.472

0.008

23.005

0.755

0.013

23.144

0.577

0.010

23.351

0.454

0.008

23.571

0.817

0.013

23.571

0.817

0.013

23.710

0.526

0.008

23.789

0.884

0.014

23.839

0.892

0.014

23.999

1.160

0.018

24.209

0.899

0.014

24.209

0.899

0.014

24.209

0.874

0.013

24.209

0.874

0.013

24.259

0.616

0.009

24.451

0.459

0.007

24.480

0.473

0.007

24.710

0.517

0.007

24.890

0.537

0.007

25.163

0.543

0.007 35

2.49E+0 5 6.36E+0 5 6.36E+0 5 2.54E+0 5 4.51E+0 5 7.68E+0 5 2.51E+0 5 2.51E+0 5 6.28E+0 5 2.26E+0 5 2.25E+0 5 1.39E+0 5 2.43E+0 5 2.43E+0 5 2.57E+0 5 2.57E+0 5 5.25E+0 5 9.90E+0 5 9.41E+0 5 8.30E+0 5 8.06E+0 5 8.41E+0 5

47 8 48 0 48 2 48 4 48 6 48 8 49 0 49 2 49 4 49 6 49 8

25.163

0.543

0.007

25.413

0.610

0.008

25.413

0.610

0.008

25.602

0.487

0.006

26.005

0.554

0.007

26.055

0.422

0.005

26.117

0.893

0.011

26.771

0.867

0.010

27.443

0.431

0.004

28.347

0.704

0.007

28.743

0.459

0.004

8.41E+0 5 7.07E+0 5 7.07E+0 5 1.16E+0 6 9.82E+0 5 1.71E+0 6 3.89E+0 5 4.78E+0 5 2.25E+0 6 1.02E+0 6 2.62E+0 6

47 9 48 1 48 3 48 5 48 7 48 9 49 1 49 3 49 5 49 7 49 9

25.413

0.610

0.008

25.413

0.610

0.008

25.602

0.487

0.006

25.924

0.552

0.007

26.055

0.422

0.005

26.117

0.893

0.011

26.359

0.460

0.005

27.347

0.790

0.008

27.443

0.431

0.004

28.743

0.459

0.004

30.161

0.895

0.007

Reference and Notes: (1) Bian, H. T.; Wen, X. W.; Li, J. B.; Chen, H. L.; Han, S. Z.; Sun, X. Q.; Song, J. A.; Zhuang, W.; Zheng, J. R. Ion Clustering in Aqueous Solutions Probed with Vibrational Energy Transfer. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 4737-4742. (2) Lipari, G.; Szabo, A. Effect of Librational Motion on Fluorescence Depolarization and Nuclear Magnietic Resonance Relaxation in Macromolecules and Membranes. Biophys. J. 1980, 30, 489-506. (3) Kinosita Jr, K.; Kawato, S.; Ikegami, A. A Theory of Fluorescence Polarization Decay in Membranes. Biophysical journal 1977, 20, 289-305. (4) Soleillet, P. Sur Les Parametres Caracterisant La Polarisation Partielle De La Lumiere Dans Les Phenomenes De Fluorescence. Ann. Phys. 1929, 12, 23-97. (5) Dale, R. E.; Eisinger, J.; Blumberg, W. The Orientational Freedom of Molecular Probes. The Orientation Factor in Intramolecular Energy Transfer. Biophys. J. 1979, 26, 161-193. (6) Li, J. B.; Bian, H. T.; Chen, H. L.; Hoang, B.; Zheng, J. R. Ion Association in Aqueous Solutions Probed through Vibrational Energy Transfers among Cation, Anion and Water Molecules. J. Phys. Chem. B. 2012, 117, 4274-4283. (7) Chang, J. C. Monopole Effects on Electronic Excitation Interactions between Large Molecules. I. Application to Energy Transfer in Chlorophylls. The Journal of 36

7.07E+0 5 7.07E+0 5 1.16E+0 6 9.74E+0 5 1.71E+0 6 3.89E+0 5 1.55E+0 6 6.55E+0 5 2.25E+0 6 2.62E+0 6 9.18E+0 5

chemical physics 1977, 67, 3901. (8) Baumann, J.; Fayer, M. Excitation Transfer in Disordered Two-Dimensional and Anisotropic Three-Dimensional Systems: Effects of Spatial Geometry on Time-Resolved Observables. The Journal of Chemical Physics 1986, 85, 4087. (9) Yang, M.; Li, F.; Skinner, J. Vibrational Energy Transfer and Anisotropy Decay in Liquid Water: Is the Förster Model Valid? The Journal of Chemical Physics 2011, 135, 164505. (10) Bian, H. T.; Chen, H. L.; Li, J. B.; Wen, X. W.; Zheng, J. R. Nonresonant and Resonant Mode-Specific Intermolecular Vibrational Energy Transfers in Electrolyte Aqueous Solutions. J. Phys. Chem. A. 2011, 115, 11657-11664. (11) Knox, R. S.; van Amerongen, H. Refractive Index Dependence of the Forster Resonance Excitation Transfer Rate. J. Phys. Chem. B 2002, 106, 5289-5293. (12) Holstein, T.; Lyo, S.; Orbach, R. Phonon-Assisted Radiative Transfer. Physical Review B 1977, 16, 934. (13) Holstein, T.; Lyo, S.; Orbach, R. Excitation Transfer in Disordered Systems. In Laser Spectroscopy of Solids; Springer: New York, 1986; pp 39-82. (14) Natkaniec, I.; Smirnov, L.; Solov'ev, A. Ammonium Dynamics in the Ordered and Disordered Phases of K 1-x (NH 4 ) x SCN Solid Solutions. Physica B: Condensed Matter 1995, 213, 667-668.

37