Moore-Penrose Inverses of Perturbed Operators on Hilbert Spaces

Moore-Penrose Inverses of Perturbed Operators on Hilbert Spaces Shani Jose

Joint work with: Dr. K. C. Sivakumar Indian Institute of Technology Madras, Chennai

Prairie Analysis Seminar

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

1 / 29

Inverse problem Solve for x given b: Ax = b X Naive solution x = A−1 b

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

2 / 29

Inverse problem Solve for x given b: Ax = b X Naive solution x = A−1 b × A−1 may not exist or the system may be inconsistent.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

2 / 29

Inverse problem Solve for x given b: Ax = b X Naive solution x = A−1 b × A−1 may not exist or the system may be inconsistent. =⇒ Generalized Inverse

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

2 / 29

Inverse problem Solve for x given b: Ax = b X Naive solution x = A−1 b × A−1 may not exist or the system may be inconsistent. =⇒ Generalized Inverse The best approximate solution (least square solution of minimum norm): x = A† b

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

2 / 29

Inverse problem Solve for x given b: Ax = b X Naive solution x = A−1 b × A−1 may not exist or the system may be inconsistent. =⇒ Generalized Inverse The best approximate solution (least square solution of minimum norm): x = A† b

A† – Moore-Penrose inverse Computational techniques Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

2 / 29

Moore-Penrose Inverse Let A ∈ B(H1 , H2 ). The Moore-Penrose inverse of A is the unique operator A† ∈ B(H2 , H1 ) (if it exists) satisfying 1

AA† A = A

2

A† AA† = A†

3

(AA† )∗ = AA†

4

(A† A)∗ = A† A If A is nonsingular, then A† = A−1 . A† exists if and only if R(A) is closed. Exists for all matrices.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

3 / 29

Remarks Equivalent Definition for A† (i) A† Ax = x, ∀x ∈ R(A∗ ) (ii) A† y = 0, ∀y ∈ N(A∗ ).

Properties of A† R(A† ) = R(A∗ ),

N(A† ) = N(A∗ ),

AA† = PR(A) ,

A† A = PR(A∗ )

PL : – the orthogonal projection onto the space L.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

4 / 29

Motivation There are many physical models where successive computation of matrix inverses must be performed. The amount of computation increases rapidly as the order of the matrix increases. Most cases, the matrix that we deal with may not be the exact matrix representing the data. Truncation and round off errors give rise to perturbations. If we have a nonsingular matrix and its inverse, and suppose that some of the entries of the matrix are altered, then it would be desirable to have an efficient computational method for finding the inverse of the new matrix from the known inverse without computing the inverse of the new matrix, afresh. =⇒ Sherman-Morrison-Woodbury (SMW) formula

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

5 / 29

Sherman-Morrison-Woodbury formula Let A be an n × n and G be an r × r nonsingular matrices with r ≤ n. Also, let V1 and V2 be n × r matrices such that (G −1 + V2 ∗ A−1 V1 )−1 exists. Then (A + V1 GV2∗ )−1 = A−1 − A−1 V1 (G −1 + V2 ∗ A−1 V1 )−1 V2 ∗ A−1 An explicit formula for the inverse of matrices of the form A + V1 G V2 ∗ . Useful: I I I

Situations where r is much smaller than n When A has certain structural properties Computing A−1 V1 (G −1 + V2 ∗ A−1 V1 )−1 V2 ∗ A−1 is ‘easier’ than inverting a general perturbed n × n matrix

Applications: Appears in Statistics, networks, structural analysis, asymptotic analysis, optimization and PDEs1 . 1

W. W. Hager. Updating the inverse of a matrix, SIAM Review, 1989. Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

6 / 29

Objective: Extend SMW formula to operators on Hilbert spaces. Obtain conditions for the nonnegativity of Moore-Penrose inverse of perturbed operators and matrices.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

7 / 29

Rank-one Perturbed Operators

Assumptions A ∈ B(H1 , H2 ) with R(A) closed.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

8 / 29

Rank-one Perturbed Operators

Assumptions A ∈ B(H1 , H2 ) with R(A) closed. B = b ⊗ c ∈ B(H1 , H2 ) a rank-one operator (B(x) = hx, ci b, b(6= 0) ∈ H2 and c(6= 0) ∈ H1 ).

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

8 / 29

Rank-one Perturbed Operators

Assumptions A ∈ B(H1 , H2 ) with R(A) closed. B = b ⊗ c ∈ B(H1 , H2 ) a rank-one operator (B(x) = hx, ci b, b(6= 0) ∈ H2 and c(6= 0) ∈ H1 ). Define M = A + B. Then

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

8 / 29

Rank-one Perturbed Operators

Assumptions A ∈ B(H1 , H2 ) with R(A) closed. B = b ⊗ c ∈ B(H1 , H2 ) a rank-one operator (B(x) = hx, ci b, b(6= 0) ∈ H2 and c(6= 0) ∈ H1 ). Define M = A + B. Then • M is a rank-one perturbation of A.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

8 / 29

Rank-one Perturbed Operators

Assumptions A ∈ B(H1 , H2 ) with R(A) closed. B = b ⊗ c ∈ B(H1 , H2 ) a rank-one operator (B(x) = hx, ci b, b(6= 0) ∈ H2 and c(6= 0) ∈ H1 ). Define M = A + B. Then • M is a rank-one perturbation of A. • M ∈ B(H1 , H2 ).

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

8 / 29

Mutually Exclusive Cases3,4

For λ = 1 + A† b, c , (i) b ∈ R(A), c ∈ R(A∗ ) and λ = 0. (ii) b ∈ R(A), c ∈ R(A∗ ) and λ 6= 0. (iii) b ∈ / R(A), c ∈ / R(A∗ ). (iv) b ∈ R(A), c ∈ / R(A∗ ). (v) b ∈ / R(A), c ∈ R(A∗ ). Note: The cases are collectively exhaustive. 3

C. D. Meyer, Generalized inversion of modified matrices. SIAM J. Appl. Math., 1973.

4

J. K. Baksalary, O. M. Baksalary, G. Trenkler, A revisitation formulae for the Moore-Penrose inverse of modified matrices. Lin.

Alg. Appl. 2003.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

9 / 29

Notation

d = A† b,

e = (A† )∗ c,

δ = hd, di , η = he, ei , µ = |λ|2 + δψ,

f = PR(A) ⊥ b, φ = hf , f i ,

ν = |λ|2 + ηφ,

g = PR(A∗ ) ⊥ c ψ = hg , g i

¯ + δg ∈ H1 p = λd

q = λe + ηf ∈ H2 where λ = 1 + hd, ci = 1 + hb, ei .

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

10 / 29

Case (i) R(M) is closed. Set D : H1 → H1 , E : H2 → H2 by D(x) = hx, di d and E (x) = hx, ei e. Then M † = A† − δ −1 DA† − η −1 A† E + δ −1 η −1 DA† E where d = A† b, e = (A† )∗ c, δ = hd, di , η = he, ei .

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

11 / 29

Case (i) R(M) is closed. Set D : H1 → H1 , E : H2 → H2 by D(x) = hx, di d and E (x) = hx, ei e. Then M † = A† − δ −1 DA† − η −1 A† E + δ −1 η −1 DA† E where d = A† b, e = (A† )∗ c, δ = hd, di , η = he, ei .

Case (ii) Assume R(M) is closed. Then M † = A† − λ−1 A† BA† .

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

11 / 29

Case (iii) Assume that R(M) closed. Set B1 : H2 → H2 by B1 (x) = hx, f i b, G1 : H1 → H1 by G1 (x) = hx, ci g , G2 : H2 → H1 by G2 (x) = hx, f i g . Then M † = A† − φ−1 A† B1 − ψ −1 G1 A† + λφ−1 ψ −1 G2 where f = PR(A) ⊥ b, g = PR(A∗ ) ⊥ c, φ = hf , f i ,

Shani (2013)

Generalized Inverses

ψ = hg , g i .

Prairie Analysis Seminar

12 / 29

Case (iii) Assume that R(M) closed. Set B1 : H2 → H2 by B1 (x) = hx, f i b, G1 : H1 → H1 by G1 (x) = hx, ci g , G2 : H2 → H1 by G2 (x) = hx, f i g . Then M † = A† − φ−1 A† B1 − ψ −1 G1 A† + λφ−1 ψ −1 G2 where f = PR(A) ⊥ b, g = PR(A∗ ) ⊥ c, φ = hf , f i ,

ψ = hg , g i .

Case (iv) Let R(M) be closed. Set G3 : H1 → H1 by G3 (x) = hx, di g . Let D and G1 be defined as in the previous theorems. Then ¯ † BA† ) M † = A† − µ−1 (ψDA† + δG1 A† − λG3 A† + λA where µ = |λ|2 + δψ.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

12 / 29

Case (v) ˜ Set B(x) = hx, f i b and E˜ (x) = hx, f i e. Let E be as before. Let R(M) be closed. Then ˜ − λA† E˜ + λA ¯ † BA† ) M † = A† − ν −1 (φA† E + ηA† B where ν = |λ|2 + ηφ.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

13 / 29

Case (v) ˜ Set B(x) = hx, f i b and E˜ (x) = hx, f i e. Let E be as before. Let R(M) be closed. Then ˜ − λA† E˜ + λA ¯ † BA† ) M † = A† − ν −1 (φA† E + ηA† B where ν = |λ|2 + ηφ. The above 5 cases are generalized to obtain formulae for (A + V1 GV2∗ )† .

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

13 / 29

Example Let H1 = H2 = B(l 2 ) and A ∈ B(l 2 ) be the right shift operator. Then • A† = A∗ - the left shift operator. • B(x) = hx, ci b, for fixed nonzero vectors b, c ∈ l2 and M = A + B. • R(M) is closed5 if kbk kck < 1. Take b = e1 and c = e3 where ei ∈ l 2 is the vector containing i th element 1 and all other elements zero. b∈ / R(A) and c ∈ R(A∗ ) M † (x) = A† x − 21 (x4 − x1 )e3 , where x = (x1 , x2 , x3 , . . .) ∈ l 2 . 5

O. Christensen, Operators with closed range, pseudo-Inverses, and perturbation of frames for a subspace. Canad. Math.

Bull.,1999.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

14 / 29

Formulae for (A + V1 GV2∗ )† Generalization of Case (i) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H2 ), V2 ∈ B(H2 , H1 ).

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

15 / 29

Formulae for (A + V1 GV2∗ )† Generalization of Case (i) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H2 ), V2 ∈ B(H2 , H1 ). • R(V1 ) ⊆ R(A), R(V2 ) ⊆ R(A∗ ), V2∗ A† V1 = −IH2 .

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

15 / 29

Formulae for (A + V1 GV2∗ )† Generalization of Case (i) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H2 ), V2 ∈ B(H2 , H1 ). • R(V1 ) ⊆ R(A), R(V2 ) ⊆ R(A∗ ), V2∗ A† V1 = −IH2 . ˆ = A + V1 V ∗ . • Ω 2

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

15 / 29

Formulae for (A + V1 GV2∗ )† Generalization of Case (i) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H2 ), V2 ∈ B(H2 , H1 ). • R(V1 ) ⊆ R(A), R(V2 ) ⊆ R(A∗ ), V2∗ A† V1 = −IH2 . ˆ = A + V1 V ∗ . • Ω 2 Then ˆ is closed. X R(Ω)

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

15 / 29

Formulae for (A + V1 GV2∗ )† Generalization of Case (i) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H2 ), V2 ∈ B(H2 , H1 ). • R(V1 ) ⊆ R(A), R(V2 ) ⊆ R(A∗ ), V2∗ A† V1 = −IH2 . ˆ = A + V1 V ∗ . • Ω 2 Then ˆ is closed. X R(Ω) ˆ † = PR(A† V )⊥ A† P † ∗ ⊥ X Ω R(A V2 ) 1

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

15 / 29

Generalization of case (ii) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H1 , H2 ), V2 ∈ B(H2 , H1 ), G ∈ B(H2 , H1 ).

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

16 / 29

Generalization of case (ii) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H1 , H2 ), V2 ∈ B(H2 , H1 ), G ∈ B(H2 , H1 ). • R(G ) and R(G † + V2∗ A† V1 ) are closed.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

16 / 29

Generalization of case (ii) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H1 , H2 ), V2 ∈ B(H2 , H1 ), G ∈ B(H2 , H1 ). • R(G ) and R(G † + V2∗ A† V1 ) are closed. • R(V1 ) ⊆ R(A), R(V2 ) ⊆ R(A∗ ). • R(V1∗ ) ⊆ R((G † + V2∗ A† V1 )∗ ), R(V2∗ ) ⊆ R(G † + V2∗ A† V1 ), R(V1∗ ) ⊆ R(G ), R(V2∗ ) ⊆ R(G ∗ )

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

16 / 29

Generalization of case (ii) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H1 , H2 ), V2 ∈ B(H2 , H1 ), G ∈ B(H2 , H1 ). • R(G ) and R(G † + V2∗ A† V1 ) are closed. • R(V1 ) ⊆ R(A), R(V2 ) ⊆ R(A∗ ). • R(V1∗ ) ⊆ R((G † + V2∗ A† V1 )∗ ), R(V2∗ ) ⊆ R(G † + V2∗ A† V1 ), R(V1∗ ) ⊆ R(G ), R(V2∗ ) ⊆ R(G ∗ ) • Ω = A + V1 GV2∗ have closed range space.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

16 / 29

Generalization of case (ii) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H1 , H2 ), V2 ∈ B(H2 , H1 ), G ∈ B(H2 , H1 ). • R(G ) and R(G † + V2∗ A† V1 ) are closed. • R(V1 ) ⊆ R(A), R(V2 ) ⊆ R(A∗ ). • R(V1∗ ) ⊆ R((G † + V2∗ A† V1 )∗ ), R(V2∗ ) ⊆ R(G † + V2∗ A† V1 ), R(V1∗ ) ⊆ R(G ), R(V2∗ ) ⊆ R(G ∗ ) • Ω = A + V1 GV2∗ have closed range space. Then, Ω† = A† − A† V1 (G † + V2∗ A† V1 )† V2∗ A† .

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

16 / 29

Generalization of Case (iii) • A ∈ B(H1 , H2 ) with R(A) closed. • U1 , W1 ∈ B(H1 , H2 ), R(U1 ) ⊆ R(A), R(W1 ) ⊆ R(A)⊥ . • U2 , W2 ∈ B(H2 , H1 ), R(U2 ) ∈ R(A∗ ), R(W2 ) ∈ R(A∗ )⊥ . • G ∈ B(H2 , H1 ), R(G ) is closed.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

17 / 29

Generalization of Case (iii) • A ∈ B(H1 , H2 ) with R(A) closed. • U1 , W1 ∈ B(H1 , H2 ), R(U1 ) ⊆ R(A), R(W1 ) ⊆ R(A)⊥ . • U2 , W2 ∈ B(H2 , H1 ), R(U2 ) ∈ R(A∗ ), R(W2 ) ∈ R(A∗ )⊥ . • G ∈ B(H2 , H1 ), R(G ) is closed. • R((U1 + W1 )∗ ) ⊆ R(G ), R((U2 + W2 )∗ ) ⊆ R(G ∗ ), R(G ∗ ) ⊆ R(W2∗ ), R(G ) ⊆ R(W1∗ ).

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

17 / 29

Generalization of Case (iii) • A ∈ B(H1 , H2 ) with R(A) closed. • U1 , W1 ∈ B(H1 , H2 ), R(U1 ) ⊆ R(A), R(W1 ) ⊆ R(A)⊥ . • U2 , W2 ∈ B(H2 , H1 ), R(U2 ) ∈ R(A∗ ), R(W2 ) ∈ R(A∗ )⊥ . • G ∈ B(H2 , H1 ), R(G ) is closed. • R((U1 + W1 )∗ ) ⊆ R(G ), R((U2 + W2 )∗ ) ⊆ R(G ∗ ), R(G ∗ ) ⊆ R(W2∗ ), R(G ) ⊆ R(W1∗ ). • Ω = A + (U1 + W1 )G (U2 + W2 )∗ with R(Ω) closed.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

17 / 29

Generalization of Case (iii) • A ∈ B(H1 , H2 ) with R(A) closed. • U1 , W1 ∈ B(H1 , H2 ), R(U1 ) ⊆ R(A), R(W1 ) ⊆ R(A)⊥ . • U2 , W2 ∈ B(H2 , H1 ), R(U2 ) ∈ R(A∗ ), R(W2 ) ∈ R(A∗ )⊥ . • G ∈ B(H2 , H1 ), R(G ) is closed. • R((U1 + W1 )∗ ) ⊆ R(G ), R((U2 + W2 )∗ ) ⊆ R(G ∗ ), R(G ∗ ) ⊆ R(W2∗ ), R(G ) ⊆ R(W1∗ ). • Ω = A + (U1 + W1 )G (U2 + W2 )∗ with R(Ω) closed. Then ∗



Ω† = A† − W2 † U2 ∗ A† − A† U1 W1 † + W2 † (G † + U2∗ A† U1 )W1 † .

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

17 / 29

Generalization of Case (iv) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H1 , H2 ), U2 , W2 ∈ B(H2 , H1 ).

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

18 / 29

Generalization of Case (iv) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H1 , H2 ), U2 , W2 ∈ B(H2 , H1 ). • R(V1 ) ⊆ R(A), R(U2 ) ⊆ R(A∗ ), R(W2 ) ⊆ R(A∗ )⊥ .

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

18 / 29

Generalization of Case (iv) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H1 , H2 ), U2 , W2 ∈ B(H2 , H1 ). • R(V1 ) ⊆ R(A), R(U2 ) ⊆ R(A∗ ), R(W2 ) ⊆ R(A∗ )⊥ . • W2 ∗ W2 = I , (A† V1 )∗ (A† V1 ) = I , L = I + U2∗ A† V1 . • L∗ L = LL∗ , K = I + L∗ L.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

18 / 29

Generalization of Case (iv) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H1 , H2 ), U2 , W2 ∈ B(H2 , H1 ). • R(V1 ) ⊆ R(A), R(U2 ) ⊆ R(A∗ ), R(W2 ) ⊆ R(A∗ )⊥ . • W2 ∗ W2 = I , (A† V1 )∗ (A† V1 ) = I , L = I + U2∗ A† V1 . • L∗ L = LL∗ , K = I + L∗ L. • Ω = A + V1 (U2 + W2 )∗ with R(Ω) closed.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

18 / 29

Generalization of Case (iv) • A ∈ B(H1 , H2 ) with closed range space. • V1 ∈ B(H1 , H2 ), U2 , W2 ∈ B(H2 , H1 ). • R(V1 ) ⊆ R(A), R(U2 ) ⊆ R(A∗ ), R(W2 ) ⊆ R(A∗ )⊥ . • W2 ∗ W2 = I , (A† V1 )∗ (A† V1 ) = I , L = I + U2∗ A† V1 . • L∗ L = LL∗ , K = I + L∗ L. • Ω = A + V1 (U2 + W2 )∗ with R(Ω) closed. Then Ω† = A† − (A† V1 )K −1 (A† V1 )∗ A† − W2 K −1 U2 ∗ A† + W2 K −1 L(A† V1 )∗ A† − (A† V1 )K −1 L∗ U2 ∗ A† .

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

18 / 29

Generalization of Case (v) • A ∈ B(H1 , H2 ) with R(A) closed. • U1 , W1 ∈ B(H1 , H2 ), V2 ∈ B(H2 , H1 )

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

19 / 29

Generalization of Case (v) • A ∈ B(H1 , H2 ) with R(A) closed. • U1 , W1 ∈ B(H1 , H2 ), V2 ∈ B(H2 , H1 ) • R(U1 ) ⊆ R(A), R(W2 ) ⊆ R(A)⊥ , R(V2 ) ⊆ R(A∗ ).

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

19 / 29

Generalization of Case (v) • A ∈ B(H1 , H2 ) with R(A) closed. • U1 , W1 ∈ B(H1 , H2 ), V2 ∈ B(H2 , H1 ) • R(U1 ) ⊆ R(A), R(W2 ) ⊆ R(A)⊥ , R(V2 ) ⊆ R(A∗ ). ∗ ∗ ˜ = I + V2 ∗ A† U1 . • W1 ∗ W1 = I , (A† V2 )∗ (A† V2 ) = I , L ˜∗ L ˜=L ˜L ˜∗ , N = I + L ˜∗ L. ˜ • L

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

19 / 29

Generalization of Case (v) • A ∈ B(H1 , H2 ) with R(A) closed. • U1 , W1 ∈ B(H1 , H2 ), V2 ∈ B(H2 , H1 ) • R(U1 ) ⊆ R(A), R(W2 ) ⊆ R(A)⊥ , R(V2 ) ⊆ R(A∗ ). ∗ ∗ ˜ = I + V2 ∗ A† U1 . • W1 ∗ W1 = I , (A† V2 )∗ (A† V2 ) = I , L ˜∗ L ˜=L ˜L ˜∗ , N = I + L ˜∗ L. ˜ • L

• Ω = A + (U1 + W1 )V2 ∗ with R(Ω) closed.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

19 / 29

Generalization of Case (v) • A ∈ B(H1 , H2 ) with R(A) closed. • U1 , W1 ∈ B(H1 , H2 ), V2 ∈ B(H2 , H1 ) • R(U1 ) ⊆ R(A), R(W2 ) ⊆ R(A)⊥ , R(V2 ) ⊆ R(A∗ ). ∗ ∗ ˜ = I + V2 ∗ A† U1 . • W1 ∗ W1 = I , (A† V2 )∗ (A† V2 ) = I , L ˜∗ L ˜=L ˜L ˜∗ , N = I + L ˜∗ L. ˜ • L

• Ω = A + (U1 + W1 )V2 ∗ with R(Ω) closed. Then ∗



Ω† = A† − A† (A† V2 )N −1 (A† V2 )∗ − A† U1 N −1 W1 ∗ ∗ ˜ −1 W1 ∗ − A† U1 L ˜∗ N −1 (A† ∗ V2 )∗ . + A† A† V2 LN

Certain applications of these formulae are obtained. Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

19 / 29

Example 1

• H = l 2 , A be the right shift operator on H. • X , Y ∈ B(H) be s. t. −X (x1 , x2 , x3 , . . .) = (0, 0, 0, x1 , x2 , x3 , . . .) Y (x1 , x2 , x3 , . . .) = (x1 , x2 , x1 , x2 , x3 , x4 , . . .). • Set Ω = A + XY ∗ . X R(X ) ⊆ R(A), R(Y ) ⊆ R(A∗ ) and −Y ∗ A† X = I – case (i). X Ω† (x1 , x2 , . . .) = (

Shani (2013)

x2 − x4 x3 − x5 , , 0, 0, . . .). 2 2

Generalized Inverses

Prairie Analysis Seminar

20 / 29

Example 2 • H = l 2 and A ∈ B(H) be A(x1 , x2 , . . .) = (x1 , 0, x2 , 0, x3 , 0, . . .). • R(A) is a closed subspace of l 2 . and A† (x) = A∗ (x) = (x1 , x3 , x5 , . . .) for all x = (x1 , x2 , x3 , . . .). • Let X (x1 , x2 , . . .) = (x1 , 0, x2 , 0, 0, 0, . . .) and Y (x1 , x2 , . . .) = (x1 , x3 , 0, 0, 0, . . .) for all x ∈ H • Ω = A + XY ∗ . X R(Ω) is closed. X Both X , Y ∈ B(H) and R(X ) ⊆ R(A), R(Y ) ⊆ R(A∗ ) and (I + Y ∗ A† X )(x1 , x2 , x3 , . . .) = (2x1 , x2 , x3 + x2 , x4 , x5 , . . .) is bijective. X Ω† (x) = (A† − A† X (I + Y ∗ A† X )−1 Y ∗ A† )(x) = (

Shani (2013)

Generalized Inverses

x1 , x3 , x5 , x7 , x9 , . . .). 2

Prairie Analysis Seminar

21 / 29

Application • H1 = H2 = l2 and A be the right shift operator defined on l 2 . • Then R(A) is closed and hence it has a bounded Moore-Penrose inverse. • A† x = A∗ x = (x2 , x3 , x4 ...), for every x = (x1 , x2 , x3 , ...) ∈ l2 , the left shift operator on l2 . • A ≥ 0 and A† ≥ 0. • Let b = he2 and c = −e1 with h ∈ / {0, 1}. • Take M = A + B, where B = h hx, −e1 i e2 . • R(M) is closed.

• b ∈ R(A), c ∈ R(A∗ ) and λ = 1 + A† b, c = 1 − h 6= 0. Thus we are in Case (ii). • M † (x) = A† (x) − X M † ≥ 0 iff h ∈ Shani (2013)

h 1−h x2 e1 .  (−∞, 21 )\{0}

∪ (1, ∞)

Generalized Inverses

Prairie Analysis Seminar

22 / 29

Star partial order and rank-one perturbation Let A1 , A2 ∈ B(H) with R(A1 ) and R(A2 ) closed. The star partial order relating A1 and A2 is defined as ∗

A1 ≤ A2 if and only if A1 A1 † = A2 A1 † and A1 † A1 = A1 † A2 .

To verify whether a rank-one perturbation preserves the star partial order ∗

Let A1 ≤ A2 . b and c in H and B(x) = hx, ci b. Set M1 = A1 + B and M2 = A2 + B. ∗

Let A1 , A2 ∈ B(H1 , H2 ) such that A1 ≤ A2 . Let B = b ⊗ c where b ∈ H2 , ∗

c ∈ H1 and M1 = A1 + B, M2 = A2 + B. Then M1 ≤ M2 if b ∈ R(A1 ) and c ∈ R(A∗1 ). Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

23 / 29

Remark Rank-one perturbations do not preserve star partial order for cases (iii), (iv) and (v) even in the finite dimensional case. Examples:  A1 =

1 0 0 0



 and A2 =

1 0 0 1

 .



Then we have A1 ≤ A2 .   0 • Take b = c = . Then b ∈ / R(A1 ) and c ∈ / R(A∗1 ) and this 1     1 0 1 0 corresponds to case (iii). Here M1 = and M2 = . 0 1 0 2 ∗

But M1 M1T 6= M2 M1T and so M1 ≤ M2 does not hold.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

24 / 29



   −1 0 and c = . Here, b ∈ R(A1 ) and c ∈ / R(A∗1 ), 0 1 and so we are in case (iv). Now, consider the rank-one perturbations M1 = A1 + bc T and M2 = A + bc T . Then,     1 −1 1 −1 M1 = and M2 = . 0 0 0 1

• Take b =

Here again, we have M1 M1T 6= M2 M1T . • By interchanging the roles of b, c and A with c, b and A∗ , respectively, it follows that the result does not hold in case (v).

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

25 / 29

Theorem ∗

A1 ≤ A2 . B(x) = hx, ci b for fixed nonzero vectors b, c ∈ H. M1 = A1 + B and M2 = A2 + B. Then any two of the following imply the third: ∗

(a) A1 ≤ A2 ∗

(b) M1 ≤ M2 (c) R(B) ⊆ N(A2 − A1 )∗ and R(B ∗ ) ⊆ N(A2 − A1 ).

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

26 / 29

Shani Jose and K. C. Sivakumar, Moore-Penrose inverses of perturbed operators on Hilbert spaces, Combinatorial Matrix Theory and Generalized Inverses of Matrices, Springer, India (2013) 119–131. Shani Jose and K. C. Sivakumar, On Nonnegative Moore-Penrose Inverses of Perturbed Matrices. J. Appl. Math., (2013), Article ID 680975, 7 pages.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

27 / 29

References J. Sherman and W. J. Morrison, Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, The Ann. Math. Statist., 21 (1950), 124–127. W. W. Hager, Updating the inverse of a matrix, SIAM Review, 31 (1989), 221–239. K. S. Riedel, A Sherman-Morrison-Woodbury identity for rank augmenting matrices with application to centering, SIAM J. Matrix Anal. Appl., 13 (1992), 659–662. J. K. Baksalary, O. M. Baksalary, and G. Trenkler, A revisitation formulae for the moore-penrose inverse of modified matrices. Linear Algebra and Applications, 372 (2003), 207–224.

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

28 / 29

Thank you

Shani (2013)

Generalized Inverses

Prairie Analysis Seminar

29 / 29