Nanomechanical and nanotribological properties of polymer nano ...

Report 2 Downloads 79 Views
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Nanomechanical and nanotribological properties of polymer nano-composites

Péter M. Nagy, D. Aranyi1, I. Kiricsi2, P. Pötschke3, E. Kálmán1 1 2

CRC-HAS, Department of Nanostructures and Surface Modification, Pusztaszeri u 59, 1025 Budapest Univ. Szeged, Department of Applied & Environmental Chemistry, Aradi vértanúk tere 1, 6720 Szeged, 3 Leibnitz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Roadmap • Motivation: – Characterise the mechanical properties of new CNT-polymer composites – Demonstrate the use and usefulness of nanomechanical methods in complex material characterization

• • • • •

Instruments Materials Methods Results Conclusion

WSS, Seville, March 28-30, 2007

2

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Research equipment

WSS, Seville, March 28-30, 2007

3

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Samples PC +15% MWCNT concentrated sample diluted to 2-4-6% concentration (Leibnitz Institute for Polymer Research Dresden)

WSS, Seville, March 28-30, 2007

4

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Sample preparation

The mounted samples on the sample holder

WSS, Seville, March 28-30, 2007

5

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Hardness & Young’s modulus •Cyclic indentation •Increasing peak-load •On a 4*4 matrix

WSS, Seville, March 28-30, 2007

6

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Evaluation Indentation

Load curve: Oliver-Pharr

WSS, Seville, March 28-30, 2007

Load – time Displacement – time Creep ??

7

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Scratch test

WSS, Seville, March 28-30, 2007

• 5 scratches in line • Peak load increasing • Spherical indenter

8

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Evaluation Scratch Scratch resistance: “Friction”

Scratch depth: difference of two scans WSS, Seville, March 28-30, 2007

9

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Wear test AFM

• Diamond coated tip • Stiff cantilever • Lower load

WSS, Seville, March 28-30, 2007

10

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Evaluation

Wear- AFM

Wear volume calculation

WSS, Seville, March 28-30, 2007

11

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Wear test Hysitron

• Spherical indenter • 3*50 scratches • Low load

WSS, Seville, March 28-30, 2007

12

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Evaluation

Wear- Hysitron Difference between “up” and “down” scan

Depth increase in 2 scans WSS, Seville, March 28-30, 2007

“Friction” change in 2 scans 13

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Results

0% CNT 2% CNT 4% CNT

6% CNT WSS, Seville, March 28-30, 2007

15% CNT 14

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Young’s modulus – Penetration depth

H(GPa)

0,6

0,5

0,4

0,6

0,2

0,5 H(GPa)

0,1

0 0

500

1000

1500

2000

2500

H [GPa]

0,4

0,6

0,3

0,5

hc [nm ] 0,2

H [GPa]

0,4

0,1

0% CNT

0 0

500

1000

1500

2000

2500

0,3

0,2

hc [nm ] 0,1

0

2% CNT

0

500

1000

1500

2000

2500

hc [nm ]

4% CNT

H(GPa)

0,6

0,5

0,4 H(GPa) 0,3

0,7

0,2

0,6

0,5

0,1

0 0

500

1000

1500

2000

hc [nm ]

2500

H [GPa]

H [GPa]

H [GPa]

H(GPa) 0,3

0,4

0,3

0,2

6% CNT

15% CNT

0,1

0 0

WSS, Seville, March 28-30, 2007

500

1000

1500 hc [nm ]

2000

2500

15

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Hardness – Penetration depth

6

5

3 6 2 5 1 4 6

0 500

1000

1500

2000

hc [nm]

2500 Er [GPa]

0

3 5

2

Er [GPa]

4

1

0% CNT

3

0 0

500

1000

1500

2000

2500

2

hc [nm ] 1

2% CNT

0 0

500

1000

1500

2000

2500

hc [nm ]

4% CNT

6

5

4

Er [GPa]

7 3 6 2 5 1 Er [GPa]

Er [GPa]

4

0 0

500

1000

1500

2000

2500

4

3

hc [nm ] 2

6% CNT

15% CNT

1

0 0

WSS, Seville, March 28-30, 2007

500

1000

1500 hc [nm ]

2000

2500

16

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Results – Young’s modulus 6

5

Er [GPa]

4

3

2

1

0 0

2

4

6

8

10

12

14

16

CNT concentration [wt%]

Average of all data over 1000 nm penetration WSS, Seville, March 28-30, 2007 depth

17

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Results – Hardness 0,6

H [GPa]

0,5 0,4 0,3 0,2 0,1 0 0

5

10

15

20

CNT concentration [wt%]

Average of all data over 1000 nm penetration WSS, Seville, March 28-30, 2007 depth

18

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Conclusion I ►Young’s modulus and Hardness of MWCNT-PC composite increases with increasing CNT concentration ►The relative increase is about 2 times the CNT concentration

WSS, Seville, March 28-30, 2007

CNT [wt%]

Er [Gpa]

H [Gpa]

0

4,2

0,42

2

4,5

0,45

4

4,7

0,46

6

4,8

0,47

15

5,4

0,55

19

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Nanoindentation Original PolyCarbonate sheet

2% CNT

WSS, Seville, March 28-30, 2007

20

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

4% CNT

6% CNT

15% CNT WSS, Seville, March 28-30, 2007

21

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Conclusion II ►Piling-up is influencing the measured Young’s modulus and Hardness in nanoindentation test ►The pile-up behaviour do not show a dependence on CNT concentration. ► Consequently the measured values are proportional to the real Young’s modulus and Hardness of polycarbonate composite WSS, Seville, March 28-30, 2007

22

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry 300

Wear volume as function of applied load

250

3

Wear volume [µm ]

Results – Wear

cnt0 cnt2 cnt4 cnt6 cnt15

200

150

100

50

0 0

1

2

3

4

5

6

7

8

9

3

Wear volume [µm ]

Number of cycles 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

0% 2% 4% 6% 15%

Wear volume as function of the number of cycles (F~34 µN) 15

20

25

30

35

Load [µN]

40

WSS, Seville, March 28-30, 2007

45

50

23

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Results – Scratch & Wear 160

140

Depth increase [nm]

120

Scratch resistance is constant

100 Sp0 Sp4

80

SP6 Sp15

60

40

20

0.8

0 0

100

200

300

400

500

600

700

800

900

1000

Normal force [µ µ N]

0.7

Scratch resistance

0.6

0.5 Sp0 Sp4

0.4

SP6 Sp15

0.3

0.2

0.1

0 0

100

200

300

400

500

600

700

800

900

Depth do not show composition dependence

1000

Normal force [µ µN]

WSS, Seville, March 28-30, 2007

24

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Conclusion III ►Both AFM-wear and Nanoscratching experiment show no significant difference between the samples ►Possible cause is the easy delamination and pulling off of the CNT

WSS, Seville, March 28-30, 2007

25

Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry

Thank You for your Attention!

WSS, Seville, March 28-30, 2007

26