Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Nanomechanical and nanotribological properties of polymer nano-composites
Péter M. Nagy, D. Aranyi1, I. Kiricsi2, P. Pötschke3, E. Kálmán1 1 2
CRC-HAS, Department of Nanostructures and Surface Modification, Pusztaszeri u 59, 1025 Budapest Univ. Szeged, Department of Applied & Environmental Chemistry, Aradi vértanúk tere 1, 6720 Szeged, 3 Leibnitz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Roadmap • Motivation: – Characterise the mechanical properties of new CNT-polymer composites – Demonstrate the use and usefulness of nanomechanical methods in complex material characterization
• • • • •
Instruments Materials Methods Results Conclusion
WSS, Seville, March 28-30, 2007
2
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Research equipment
WSS, Seville, March 28-30, 2007
3
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Samples PC +15% MWCNT concentrated sample diluted to 2-4-6% concentration (Leibnitz Institute for Polymer Research Dresden)
WSS, Seville, March 28-30, 2007
4
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Sample preparation
The mounted samples on the sample holder
WSS, Seville, March 28-30, 2007
5
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Hardness & Young’s modulus •Cyclic indentation •Increasing peak-load •On a 4*4 matrix
WSS, Seville, March 28-30, 2007
6
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Evaluation Indentation
Load curve: Oliver-Pharr
WSS, Seville, March 28-30, 2007
Load – time Displacement – time Creep ??
7
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Scratch test
WSS, Seville, March 28-30, 2007
• 5 scratches in line • Peak load increasing • Spherical indenter
8
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Evaluation Scratch Scratch resistance: “Friction”
Scratch depth: difference of two scans WSS, Seville, March 28-30, 2007
9
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Wear test AFM
• Diamond coated tip • Stiff cantilever • Lower load
WSS, Seville, March 28-30, 2007
10
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Evaluation
Wear- AFM
Wear volume calculation
WSS, Seville, March 28-30, 2007
11
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Wear test Hysitron
• Spherical indenter • 3*50 scratches • Low load
WSS, Seville, March 28-30, 2007
12
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Evaluation
Wear- Hysitron Difference between “up” and “down” scan
Depth increase in 2 scans WSS, Seville, March 28-30, 2007
“Friction” change in 2 scans 13
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Results
0% CNT 2% CNT 4% CNT
6% CNT WSS, Seville, March 28-30, 2007
15% CNT 14
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Young’s modulus – Penetration depth
H(GPa)
0,6
0,5
0,4
0,6
0,2
0,5 H(GPa)
0,1
0 0
500
1000
1500
2000
2500
H [GPa]
0,4
0,6
0,3
0,5
hc [nm ] 0,2
H [GPa]
0,4
0,1
0% CNT
0 0
500
1000
1500
2000
2500
0,3
0,2
hc [nm ] 0,1
0
2% CNT
0
500
1000
1500
2000
2500
hc [nm ]
4% CNT
H(GPa)
0,6
0,5
0,4 H(GPa) 0,3
0,7
0,2
0,6
0,5
0,1
0 0
500
1000
1500
2000
hc [nm ]
2500
H [GPa]
H [GPa]
H [GPa]
H(GPa) 0,3
0,4
0,3
0,2
6% CNT
15% CNT
0,1
0 0
WSS, Seville, March 28-30, 2007
500
1000
1500 hc [nm ]
2000
2500
15
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Hardness – Penetration depth
6
5
3 6 2 5 1 4 6
0 500
1000
1500
2000
hc [nm]
2500 Er [GPa]
0
3 5
2
Er [GPa]
4
1
0% CNT
3
0 0
500
1000
1500
2000
2500
2
hc [nm ] 1
2% CNT
0 0
500
1000
1500
2000
2500
hc [nm ]
4% CNT
6
5
4
Er [GPa]
7 3 6 2 5 1 Er [GPa]
Er [GPa]
4
0 0
500
1000
1500
2000
2500
4
3
hc [nm ] 2
6% CNT
15% CNT
1
0 0
WSS, Seville, March 28-30, 2007
500
1000
1500 hc [nm ]
2000
2500
16
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Results – Young’s modulus 6
5
Er [GPa]
4
3
2
1
0 0
2
4
6
8
10
12
14
16
CNT concentration [wt%]
Average of all data over 1000 nm penetration WSS, Seville, March 28-30, 2007 depth
17
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Results – Hardness 0,6
H [GPa]
0,5 0,4 0,3 0,2 0,1 0 0
5
10
15
20
CNT concentration [wt%]
Average of all data over 1000 nm penetration WSS, Seville, March 28-30, 2007 depth
18
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Conclusion I ►Young’s modulus and Hardness of MWCNT-PC composite increases with increasing CNT concentration ►The relative increase is about 2 times the CNT concentration
WSS, Seville, March 28-30, 2007
CNT [wt%]
Er [Gpa]
H [Gpa]
0
4,2
0,42
2
4,5
0,45
4
4,7
0,46
6
4,8
0,47
15
5,4
0,55
19
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Nanoindentation Original PolyCarbonate sheet
2% CNT
WSS, Seville, March 28-30, 2007
20
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
4% CNT
6% CNT
15% CNT WSS, Seville, March 28-30, 2007
21
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Conclusion II ►Piling-up is influencing the measured Young’s modulus and Hardness in nanoindentation test ►The pile-up behaviour do not show a dependence on CNT concentration. ► Consequently the measured values are proportional to the real Young’s modulus and Hardness of polycarbonate composite WSS, Seville, March 28-30, 2007
22
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry 300
Wear volume as function of applied load
250
3
Wear volume [µm ]
Results – Wear
cnt0 cnt2 cnt4 cnt6 cnt15
200
150
100
50
0 0
1
2
3
4
5
6
7
8
9
3
Wear volume [µm ]
Number of cycles 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
0% 2% 4% 6% 15%
Wear volume as function of the number of cycles (F~34 µN) 15
20
25
30
35
Load [µN]
40
WSS, Seville, March 28-30, 2007
45
50
23
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Results – Scratch & Wear 160
140
Depth increase [nm]
120
Scratch resistance is constant
100 Sp0 Sp4
80
SP6 Sp15
60
40
20
0.8
0 0
100
200
300
400
500
600
700
800
900
1000
Normal force [µ µ N]
0.7
Scratch resistance
0.6
0.5 Sp0 Sp4
0.4
SP6 Sp15
0.3
0.2
0.1
0 0
100
200
300
400
500
600
700
800
900
Depth do not show composition dependence
1000
Normal force [µ µN]
WSS, Seville, March 28-30, 2007
24
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Conclusion III ►Both AFM-wear and Nanoscratching experiment show no significant difference between the samples ►Possible cause is the easy delamination and pulling off of the CNT
WSS, Seville, March 28-30, 2007
25
Hungarian Academy of Sciences, Chemical Research Centre, Institute for Chemistry
Thank You for your Attention!
WSS, Seville, March 28-30, 2007
26