New exact double periodic wave and complex ... - Semantic Scholar

Report 0 Downloads 18 Views
Applied Mathematics and Computation 229 (2014) 159–172

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

New exact double periodic wave and complex wave solutions for a generalized sinh–Gordon equation Bin He ⇑, Weiguo Rui, Yao Long College of Mathematics, Honghe University, Mengzi, Yunnan 661100, PR China

a r t i c l e

i n f o

Keywords: A generalized sinh–Gordon equation Binary F-expansion method Elliptic equation Constraint condition Exact solution

a b s t r a c t In this paper, dependent and independent variable transformations are introduced to solve a generalized sinh–Gordon equation by using the binary F-expansion method and the knowledge of elliptic equation and Jacobian elliptic functions. Many different new exact solutions such as double periodic wave and complex wave solutions are obtained. Some previous results are extended. Ó 2013 Elsevier Inc. All rights reserved.

1. Introduction It is well known that the exact solutions of the sinh–Gordon equations have been extensively studied in the field of theoretical physics (see Refs. [1–7] and references cited therein). In 2006, Wazwaz [8] studied the following generalized Sinh–Gordon equation:

utt  auxx þ b sinhðnuÞ ¼ 0;

ð1Þ

where n is a positive integer and a; b are two constants. And he derived families of exact solutions using the reliable tanh method. Tang et al. [9] studied the bifurcation behaviors and exact solutions of the Eq. (1) under three different functions transformations by using the bifurcation theory of dynamical system. In this paper, we aim to extend the previous works in Refs. [8,9], we shall obtain many new exact solutions of Eq. (1), including double periodic wave and complex wave solutions. This paper is organized as follows. In Section 2, we introduce the binary F-expansion method briefly. In Section 3, we give many exact solutions of Eq. (1). In Section 4, a short conclusion will be given. 2. The binary F-expansion method For a given nonlinear partial differential equation

Uðf ðuÞ; ux ; ut ; uxx ; utt ; uxt ; . . .Þ ¼ 0;

ð2Þ

where f ðuÞ is a composite function which is similar to sinðnuÞ or sinhðnuÞ ðn ¼ 1; 2; . . .Þ etc. As in Ref. [15], the binary F-expansion method is simply represented as follows: Step 1: We make a transformation

  UðnÞ ; u¼/ VðgÞ

⇑ Corresponding author. E-mail addresses: [email protected], [email protected] (B. He). 0096-3003/$ - see front matter Ó 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.12.040

ð3Þ

160

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172

where n ¼ k1 ðx þ c1 tÞ; g ¼ k2 ðx þ c2 tÞ; k1 ; k2 ; c1 ; c2 are unknown parameters which to be further determined. The transfor    UðnÞ mation u ¼ / VUðnÞ was first given by Lamb and used it to solve the sine–Gordon equation [12], u ¼ 4n tan1 Vð ðgÞ gÞ and   1 UðnÞ 4 are its two special cases. Substituting (3) into (2), yields u ¼ n tanh VðgÞ

UðU; U 0 ; U 00 ; . . . ; V; V 0 ; V 00 ; . . .Þ ¼ 0:

ð4Þ

Step 2: On some constraint conditions, if Eq. (4) can be differentiated as follows

U 02 ¼ P1 þ Q 1 U 2 þ R1 U 4 ;

ð5Þ

V 02 ¼ P2 þ Q 2 V 2 þ R2 V 4 ;

ð6Þ

where P1 ; Q 1 ; R1 ; P 2 ; Q 2 ; R2 are some parameters, then, with the aid of Table 1 (see Ref. [14]), we can get the solutions UðnÞ; VðgÞ of Eqs. (5) and (6). Step 3: Substituting the UðnÞ; VðgÞ into (3), many exact solutions of Eq. (2) can be obtained. 3. Exact solutions of Eq. (1) First, let us recall some properties of Jacobian elliptic functions. We know that there exist twelve kinds of Jacobian elliptic functions [10,11]

snðs; mÞ; cnðs; mÞ; dnðs; mÞ; scðs; mÞ; sdðs; mÞ; cdðs; mÞ; nsðs; mÞ; ncðs; mÞ; ndðs; mÞ; csðs; mÞ; dsðs; mÞ; dcðs; mÞ; where m ð0 < m < 1Þ is a modulus of Jacobian elliptic functions. When m ! 1, the Jacobian functions degenerate to the hyperbolic functions, that is

snðs; mÞ ! tanhðsÞ; cnðs; mÞ ! sechðsÞ; dnðs; mÞ ! sechðsÞ; scðs; mÞ ! sinhðsÞ; sdðs; mÞ ! sinhðsÞ; cdðs; mÞ ! 1; nsðs; mÞ ! cothðsÞ; ncðs; mÞ ! coshðsÞ; ndðs; mÞ ! coshðsÞ; csðs; mÞ ! cschðsÞ; dsðs; mÞ ! cschðsÞ; dcðs; mÞ ! 1: When m ! 0, the Jacobian functions degenerate to the trigonometric functions, i.e.

snðs; mÞ ! sinðsÞ; cnðs; mÞ ! cosðsÞ; dnðs; mÞ ! 1; scðs; mÞ ! tanðsÞ; sdðs; mÞ ! sinðsÞ; cdðs; mÞ ! cosðsÞ; nsðs; mÞ ! cscðsÞ; ncðs; mÞ ! secðsÞ; ndðs; mÞ ! 1; csðs; mÞ ! cotðsÞ; dsðs; mÞ ! cscðsÞ; dcðs; mÞ ! secðsÞ: Next, we study Eq. (1). Considering the following transformation:

n ¼ kðx þ ctÞ;



a  c

g ¼ k x þ t ; a – c2 ;

ð7Þ

where k; c are two parameters to be determined later, Eq. (1) can be rewritten as 2

k2 c2 ðc2  aÞunn þ k2 aða  c2 Þugg þ bc sinhðnuÞ ¼ 0:

ð8Þ

By means of a similar ansatz as given in Refs. [12,13], letting Table 1 Relations between values of ðP; Q ; RÞ and corresponding FðsÞ in ODE F 0 2 ¼ P þ QF 2 þ RF 4 P

Q

R

FðsÞ

1

ð1 þ m2 Þ 2m2  1 2  m2 ð1 þ m2 Þ 2m2  1 2  m2 2  m2 2m2  1 2  m2 2m2  1

m2 m2 1 1

snðs; mÞ; cdðs; mÞ cnðs; mÞ

12m2 2 1þm2 2 m2 2 2 m2 2 2

1 4

1  m2 m2  1 m2 m2 1 1 1 1  m2 m2 ð1  m2 Þ 1 4 1m2 4 m2 4 m2 4

1  m2 m2  1 1  m2 m2 ð1  m2 Þ 1 1

dnðs; mÞ nsðs; mÞ; dcðs; mÞ ncðs; mÞ ndðs; mÞ scðs; mÞ sdðs; mÞ csðs; mÞ dsðs; mÞ nsðs; mÞ  csðs; mÞ

1m2 4 1 4

ncðs; mÞ  scðs; mÞ

m2 4

snðs; mÞ  icsðs; mÞ; i ¼ 1

nsðs; mÞ  dsðs; mÞ 2

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172



  4 1 UðnÞ tanh n VðgÞ

161

ð9Þ

for Eq. (8), yields

    V gg U nn 2 k2 c2 ðc2  aÞ ðU 2  V 2 Þ  2U 2n þ k2 aða  c2 Þ ðV 2  U 2 Þ  2V 2g ¼ nbc ðU 2 þ V 2 Þ: U V

ð10Þ

Successive differentiation of this result with respect to both n and g results in

    c2 U nn a V gg  ¼ 0; UU n U n VV g V g

ð11Þ

and from (11), one has

    c2 U nn a V gg ¼ ¼ x; UU n U n VV g V g

ð12Þ

where x is a parameter to be determined later, i.e.

U 2n ¼

x 4c2

U 4 þ l1 U 2 þ m1 ;

V 2g ¼

x 4a

V 4 þ l2 V 2 þ m2 ;

ð13Þ

where l1 ; m1 ; l2 ; m2 are integral constants. Considering (10) and (13), we have the corresponding constraint conditions 2

k2 c2 ðc2  aÞl1 þ k2 aða  c2 Þl2 þ nbc ¼ 0;

c2 m1  am2 ¼ 0:

ð14Þ

Obviously, not all Jacobi elliptic functions satisfying (13) can satisfy the constraint conditions (14). Only some combinations of these Jacobi elliptic functions are the solutions that the Eq. (1) can admit. With the aid of Table 1, we will show the details. There are 31 cases which need to be addressed. Case 1. From Table 1, choosing U ¼ snðn; kÞ (or U ¼ cdðn; kÞ) and V ¼ ndðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼k ;

l1 ¼ ð1  k2 Þ; m1 ¼ 1;

x 4a

¼ m2  1;

l2 ¼ 2  m2 ; m2 ¼ 1:

ð15Þ

Substituting (15) into the constraint conditions (14), the parameters can be determined as



pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1  m2 ;

nb ; 4að1  m2 Þ

x ¼ 4aðm2  1Þ; k2 ¼

c2 ¼ a;

ð16Þ

then the double periodic wave solutions to the Eq. (1) are



4 1 tanh ðsnðn; kÞdnðg; mÞÞ; n

ð17Þ



4 1 tanh ðcdðn; kÞdnðg; mÞÞ: n

ð18Þ

and

The profile of (17) is shown in Fig. 1(1–1). Case 2. From Table 1, choosing U ¼ snðn; kÞ (or U ¼ cdðn; kÞ) and V ¼ nsðg; mÞ  csðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼k ;

l1 ¼ ð1  k2 Þ; m1 ¼ 1;

x 4a

¼

1 ; 4

l2 ¼

1  2m2 ; 2

1 4

m2 ¼ :

ð19Þ

Substituting (19) into the constraint conditions (14), the parameters can be determined as

k ¼ 1; x ¼ a;

k2 ¼

2nb ; 3að2m2  1Þ

c2 ¼

a ; 4

ð20Þ

then the complex wave solutions to the Eq. (1) are



  4 tanhðnÞ 1 ; tanh n nsðg; mÞ  csðg; mÞ

ð21Þ

162

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172

6 3

3

4

2

2

2

1

1

0

0

1

1

2

2

0 2 4

3

3 100

50

0

50

100

3

2

1

0

1

2

3

4

2

1

0

1

2

3

4

3 0.6

6

0.4

2

0.2

1

2

0

0

0.0

4

0.2

2

1 0.4

4 2

0.6

6 3 5

0

20

5

10

0

10

20

10

5

15

10

5

0

5

10

15

4 1.5 1.0

2

0.5 0

0.0 0.5

2 1.0 1.5

4 10

5

0

5

10

0

5

10

pffiffi 3 Fig. 1. Various travelling waves described by solutions (17),pffiffi(21), (49), (69), (76) and (107). (1–1) n ¼ 3; a ¼ 25; b ¼  16 ; c ¼ 5; m ¼ 13 ; k ¼ 2 3 2 ; k ¼ 40 . pffiffi pffiffi 2 5 3 2 5 (1–2) and (1–3) n¼ 3; a ¼ 16; b ¼ 1; c ¼ 2; m p ¼ffiffi 3 ; k ¼ 3 ; k ¼ 4 . (1–4) n ¼ 3; a ¼ 36; b ¼ 1; c ¼ 3, k ¼ 15 . (1–5) q n ffiffiffiffi ¼ 3; a ¼ 36; b ¼ 1; c ¼ 3; pffiffiffiffi pffiffi 57 3 3 7 10 k ¼ 57 . (1–6) n ¼ 3; a ¼ 25; b ¼ 1; c ¼ 5; k ¼ 10 . (1–7) and (1–8) n ¼ 3; a ¼ 16; b ¼ 10; c ¼ 2; m ¼ 4 ; k ¼ 4 ; k ¼ 2 71.

and



  4 1 1 ; tanh n nsðg; mÞ  csðg; mÞ

ð22Þ

The profiles of (21) are shown in Fig. 1(1–2) and (1–3). When m ! 0, the solutions (21), (22) turn to be another complex wave and periodic wave solutions respectively



  4 tanhðnÞ 1 ; tanh n cscðgÞ  cotðgÞ

ð23Þ



  4 1 1 : tanh n cscðgÞ  cotðgÞ

ð24Þ

and

Case 3. From Table 1, choosing U ¼ snðn; kÞ (or U ¼ cdðn; kÞ) and V ¼ ncðg; mÞ  scðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼k ;

l1 ¼ ð1  k2 Þ; m1 ¼ 1;

x 4a

¼

1  m2 ; 4

l2 ¼

1 þ m2 2

m2 ¼

1  m2 : 4

ð25Þ

163

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172

Substituting (25) into the constraint conditions (14), the parameters can be determined as

x ¼ að1  m2 Þ; k2 ¼

k ¼ 1;

2nbðm2  1Þ ; aðm2 þ 1Þðm2 þ 3Þ

c2 ¼

að1  m2 Þ ; 4

ð26Þ

then the complex wave solutions to the Eq. (1) are



  4 tanhðnÞ 1 ; tanh n ncðg; mÞ  scðg; mÞ

ð27Þ



  4 1 1 ; tanh n ncðg; mÞ  scðg; mÞ

ð28Þ

and

when m ! 0, the solutions (27), (28) turn to be another complex wave and periodic wave solutions respectively



  4 tanhðnÞ 1 ; tanh n secðgÞ  tanðgÞ

ð29Þ



  4 1 1 : tanh n secðgÞ  tanðgÞ

ð30Þ

and

Case 4. From Table 1, choosing U ¼ snðn; kÞ (or U ¼ cdðn; kÞ) and V ¼ nsðg; mÞ  dsðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼k ;

l1 ¼ ð1  k2 Þ; m1 ¼ 1;

x 4a

¼

1 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð31Þ

Substituting (31) into the constraint conditions (14), the parameters can be determined as

k ¼ 1;

m ¼ 1;

x ¼ a; k2 ¼

2nb ; 3a

c2 ¼

a ; 4

ð32Þ

then the complex wave solutions to the Eq. (1) are



  4 tanhðnÞ 1 ; tanh n cothðgÞ  cschðgÞ

ð33Þ



  4 1 1 : tanh n cothðgÞ  cschðgÞ

ð34Þ

and

2

Case 5. From Table 1, choosing U ¼ snðn; kÞ (or U ¼ cdðn; kÞ) and V ¼ snðg; mÞ  icsðg; mÞ; i ¼ 1, respectively, and then from (13), we have

x 4c2

2

¼k ;

l1 ¼ ð1  k2 Þ; m1 ¼ 1;

x 4a

¼

m2 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð35Þ

Substituting (35) into the constraint conditions (14), the parameters can be determined as

k ¼ 1;

x ¼ am2 ; k2 ¼

aðm2

2m2 nb ;  2Þðm2  4Þ

c2 ¼

m2 a ; 4

ð36Þ

then the complex wave solutions to the Eq. (1) are



  4 tanhðnÞ 1 ; tanh n snðg; mÞ  icsðg; mÞ

ð37Þ



  4 1 1 ; tanh n snðg; mÞ  icsðg; mÞ

ð38Þ

and

when m ! 1, the solutions (37), (38) turn to be another complex wave solutions respectively

164

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172



  4 tanhðnÞ 1 ; tanh n tanhðgÞ  icschðgÞ

ð39Þ



  4 1 1 : tanh n tanhðgÞ  icschðgÞ

ð40Þ

and

Case 6. From Table 1, choosing U ¼ cnðn; kÞ and V ¼ sdðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼ k ;

x

l1 ¼ 2k2  1; m1 ¼ 1  k2 ;

4a

¼ m2 ð1  m2 Þ;

l2 ¼ 2m2  1; m2 ¼ 1:

ð41Þ

Substituting (41) into the constraint conditions (14), the parameters can be determined as 2

k ¼

m2 ð1  m2 Þ ; 1 þ m2  m4

x ¼ 4am2 ðm2  1Þ; k2 ¼

nbð1 þ m2  m4 Þ ; am4 ð1  m4 Þ

c2 ¼ að1 þ m2  m4 Þ;

ð42Þ

then the double periodic wave solution to the Eq. (1) is



4 1 tanh ðcnðn; kÞdsðg; mÞÞ: n

ð43Þ

Case 7. From Table 1, choosing U ¼ cnðn; kÞ and V ¼ dsðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼ k ;

x

l1 ¼ 2k2  1; m1 ¼ 1  k2 ;

4a

¼ 1;

l2 ¼ 2m2  1; m2 ¼ m2 ð1  m2 Þ:

ð44Þ

Substituting (44) into the constraint conditions (14), the parameters can be determined as 2

k ¼

1 ; 1 þ m2  m4

x ¼ 4a; c2 ¼ að1 þ m2  m4 Þ; k2 ¼

nbð1 þ m2  m4 Þ ; am2 ð2 þ 3m2  m6 Þ

ð45Þ

then the double periodic wave solution to the Eq. (1) is



4 1 tanh ðcnðn; kÞsdðg; mÞÞ: n

ð46Þ

Case 8. From Table 1, choosing U ¼ cnðn; kÞ and V ¼ nsðg; mÞ þ dsðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼ k ;

x

l1 ¼ 2k2  1; m1 ¼ 1  k2 ;

4a

¼

1 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð47Þ

Substituting (47) into the constraint conditions (14), the parameters can be determined as

k ¼ 1;

m ¼ 0;

x ¼ a; k2 ¼ 

4nb ; 15a

a c2 ¼  ; 4

ð48Þ

then the complex wave solution to the Eq. (1) is



  4 1 1 tanh sechðnÞ sinðgÞ : n 2

ð49Þ

The profile of (49) is shown in Fig. 1(1–4). Case 9. From Table 1, choosing U ¼ dnðn; kÞ and V ¼ csðg; mÞ, respectively, and then from (13), we have

x 4c2

¼ 1;

l1 ¼ 2  k2 ; m1 ¼ k2  1;

x 4a

¼ 1;

l2 ¼ 2  m2 ; m2 ¼ 1  m2 :

ð50Þ

Substituting (50) into the constraint conditions (14), the parameters can be determined as

k ¼ m;

x ¼ 4a; k2 ¼

nb ; 4að2  m2 Þ

c2 ¼ a;

ð51Þ

then the double periodic wave solution to the Eq. (1) is



4 1 tanh ðdnðn; mÞscðg; mÞÞ; n

ð52Þ

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172

165

when m ! 0, the solution (52) turn to be another periodic wave solution



4 1 tanh ðtanðgÞÞ: n

ð53Þ

Case 10. From Table 1, choosing U ¼ dnðn; kÞ and V ¼ nsðg; mÞ  dsðg; mÞ, respectively, and then from (13), we have

x 4c2

¼ 1;

x

l1 ¼ 2  k2 ; m1 ¼ k2  1;

4a

¼

1 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð54Þ

Substituting (54) into the constraint conditions (14), the parameters can be determined as



pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1  m2 ;

x ¼ a; k2 ¼

4nb ; 15aðm2  1Þ

a c2 ¼  ; 4

ð55Þ

then the complex wave solution to the Eq. (1) is



  4 dnðn; kÞ 1 : tanh n nsðg; mÞ  dsðg; mÞ

ð56Þ

Case 11. From Table 1, choosing U ¼ nsðn; kÞ and V ¼ nsðg; mÞ  csðg; mÞ, respectively, and then from (13), we have

x 4c2

¼ 1;

l1 ¼ ð1 þ k2 Þ; m1 ¼ k2 ;

x 4a

¼

1 ; 4

l2 ¼

1  2m2 ; 2

1 4

m2 ¼ :

ð57Þ

Substituting (57) into the constraint conditions (14), the parameters can be determined as

k ¼ 1;

x ¼ a; k2 ¼

nb ; 3aðm2  1Þ

c2 ¼

a ; 4

ð58Þ

then the complex wave solution to the Eq. (1) is



  4 cothðnÞ 1 ; tanh n nsðg; mÞ  csðg; mÞ

ð59Þ

when m ! 0, the solution (59) turn to be another complex wave solution



  4 cothðnÞ 1 : tanh n cscðgÞ  cotðgÞ

ð60Þ

Case 12. From Table 1, choosing U ¼ nsðn; kÞ and V ¼ ncðg; mÞ  scðg; mÞ, respectively, and then from (13), we have

x 4c2

¼ 1;

l1 ¼ ð1 þ k2 Þ; m1 ¼ k2 ;

x 4a

¼

1  m2 ; 4

l2 ¼

1 þ m2 ; 2

m2 ¼

1  m2 : 4

ð61Þ

Substituting (61) into the constraint conditions (14), the parameters can be determined as

k ¼ 1;

x ¼ að1  m2 Þ; k2 ¼

nbðm2  1Þ ; að3 þ m2 Þ

c2 ¼

að1  m2 Þ ; 4

ð62Þ

then the complex wave solution to the Eq. (1) is



  4 cothðnÞ 1 ; tanh n ncðg; mÞ  scðg; mÞ

ð63Þ

when m ! 0, the solution (63) turn to be another complex wave solution



  4 cothðnÞ 1 : tanh n secðgÞ  tanðgÞ

ð64Þ

Case 13. From Table 1, choosing U ¼ nsðn; kÞ (or U ¼ dcðn; kÞ) and V ¼ nsðg; mÞ  dsðg; mÞ, respectively, and then from (13), we have

x 4c2

¼ 1;

l1 ¼ ð1 þ k2 Þ; m1 ¼ k2 ;

x 4a

¼

1 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

Substituting (65) into the constraint conditions (14), the parameters can be determined as

ð65Þ

166

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172

k ¼ m;

x ¼ a; k2 ¼

4nb ; 9að1  m2 Þ

c2 ¼

a ; 4

ð66Þ

then the complex wave solutions to the Eq. (1) are



  4 nsðn; kÞ 1 tanh n nsðg; mÞ  dsðg; mÞ

ð67Þ



  4 dcðn; kÞ 1 ; tanh n nsðg; mÞ  dsðg; mÞ

ð68Þ

and

when m ! 0, the solutions (67) and (68) turn to be another double periodic wave solutions respectively



  4 1 1 cscðnÞ sinðgÞ ; tanh n 2

ð69Þ



  4 1 1 secðnÞ sinðgÞ : tanh n 2

ð70Þ

and

The profile of (69) is shown in Fig. 1(1–5). Case 14. From Table 1, choosing U ¼ nsðn; kÞ and V ¼ snðg; mÞ  icsðg; mÞ, respectively, and then from (13), we have

x 4c2

¼ 1;

l1 ¼ ð1 þ k2 Þ; m1 ¼ k2 ;

x 4a

¼

m2 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð71Þ

Substituting (71) into the constraint conditions (14), the parameters can be determined as

k ¼ 1;

x ¼ am2 ; k2 ¼

m2 nb ; að1  m2 Þð4  m2 Þ

c2 ¼

am2 ; 4

ð72Þ

then the complex wave solution to the Eq. (1) is



  4 cothðnÞ 1 : tanh n snðg; mÞ  icsðg; mÞ

ð73Þ

Case 15. From Table 1, choosing U ¼ ncðn; kÞ and V ¼ scðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼1k ;

l1 ¼ 2k2  1; m1 ¼ k2 ;

x 4a

¼ 1  m2 ;

l2 ¼ 2  m2 ; m2 ¼ 1:

ð74Þ

Substituting (74) into the constraint conditions (14), the parameters can be determined as

k ¼ 1;

m ¼ 1;

x ¼ 0; k2 ¼

nb ; 4a

c2 ¼ a;

ð75Þ

then the complex wave solution to the Eq. (1) is



  4 1 coshðnÞ : tanh n sinhðgÞ

ð76Þ

The profile of (76) is shown in Fig. 1(1–6). Case 16. From Table 1, choosing U ¼ ncðn; kÞ and V ¼ sdðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼1k ;

l1 ¼ 2k2  1; m1 ¼ k2 ;

x 4a

¼ m2 ð1  m2 Þ;

l2 ¼ 2m2  1; m2 ¼ 1:

ð77Þ

Substituting (77) into the constraint conditions (14), the parameters can be determined as

1 k ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; 1 þ m2  m4

x ¼ 4am2 ðm2  1Þ; k2 ¼

nbð1 þ m2  m4 Þ ; m2 að2 þ 3m2  m6 Þ

c2 ¼ aðm4  m2  1Þ;

ð78Þ

then the double periodic wave solution to the Eq. (1) is



4 1 tanh ðncðn; kÞdsðg; mÞÞ: n

ð79Þ

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172

167

Case 17. From Table 1, choosing U ¼ ncðn; kÞ and V ¼ dsðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼1k ;

x

l1 ¼ 2k2  1; m1 ¼ k2 ;

4a

l2 ¼ 2m2  1; m2 ¼ m2 ð1  m2 Þ:

¼ 1;

ð80Þ

Substituting (80) into the constraint conditions (14), the parameters can be determined as



pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi m ð1  m2 Þð1 þ m2  m4 Þ ; 1 þ m2  m4

x ¼ 4a; k2 ¼

nbð1 þ m2  m4 Þ ; am4 ð1  m4 Þ

c2 ¼ að1 þ m2  m4 Þ;

ð81Þ

then the double periodic wave solution to the Eq. (1) is



4 1 tanh ðncðn; kÞsdðg; mÞÞ: n

ð82Þ

Case 18. From Table 1, choosing U ¼ ndðn; kÞ and V ¼ scðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼ k  1;

l1 ¼ 2  k2 ; m1 ¼ 1;

x 4a

¼ 1  m2 ;

l2 ¼ 2  m2 ; m2 ¼ 1:

ð83Þ

Substituting (83) into the constraint conditions (14), the parameters can be determined as

k ¼ m;

x ¼ 4að1  m2 Þ; k2 ¼

nb ; 4að2  m2 Þ

c2 ¼ a;

ð84Þ

then the double periodic wave solution to the Eq. (1) is



4 1 tanh ðndðn; kÞcsðg; mÞÞ; n

ð85Þ

when m ! 0, the solution (85) turn to be another periodic wave solution

4 1 u ¼  tanh ðcotðgÞÞ: n

ð86Þ

Case 19. From Table 1, choosing U ¼ scðn; kÞ and V ¼ nsðg; mÞ  csðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼1k ;

l1 ¼ 2  k2 ; m1 ¼ 1;

x 4a

¼

1 ; 4

l2 ¼

1  2m2 ; 2

1 4

m2 ¼ :

ð87Þ

Substituting (87) into the constraint conditions (14), the parameters can be determined as

k ¼ 0;

x ¼ a; k2 ¼

nb ; 3am2

c2 ¼

a ; 4

ð88Þ

then the complex wave solution to the Eq. (1) is



  4 tanðnÞ 1 ; tanh n nsðg; mÞ  csðg; mÞ

ð89Þ

when m ! 1, the solution (89) turn to be another complex wave solution



  4 tanðnÞ 1 : tanh n cothðgÞ  cschðgÞ

ð90Þ

Case 20. From Table 1, choosing U ¼ scðn; kÞ and V ¼ ncðg; mÞ  scðg; mÞ, respectively, and then from (13), we have

x 4c2

2

¼1k ;

l1 ¼ 2  k2 ; m1 ¼ 1;

x 4a

¼

1  m2 ; 4

l2 ¼

1 þ m2 ; 2

m2 ¼

1  m2 : 4

ð91Þ

Substituting (91) into the constraint conditions (14), the parameters can be determined as

k ¼ 0;

x ¼ að1  m2 Þ; k2 ¼

nbðm2  1Þ ; am2 ðm2 þ 3Þ

c2 ¼

að1  m2 Þ ; 4

ð92Þ

then the complex wave solution to the Eq. (1) is



  4 tanðnÞ 1 : tanh n ncðg; mÞ  scðg; mÞ

ð93Þ

168

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172 2

Case 21. From Table 1, choosing U ¼ scðn; kÞ and V ¼ snðg; mÞ  icsðg; mÞ; i ¼ 1, respectively, and then from (13), we have

x 4c2

2

¼1k ;

l1 ¼ 2  k2 ; m1 ¼ 1;

x 4a

m2 ; 4

¼

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð94Þ

Substituting (94) into the constraint conditions (14), the parameters can be determined as 2

k ¼ 0;

x ¼ am2 ; k2 ¼

nbm ; að4  m2 Þ

c2 ¼

am2 ; 4

ð95Þ

then the complex wave solution to the Eq. (1) is



  4 tanðnÞ 1 ; tanh n snðg; mÞ  icsðg; mÞ

ð96Þ

when m ! 1, the solution (96) turn to be another complex wave solution



  4 tanðnÞ 1 : tanh n tanhðgÞ  icschðgÞ

ð97Þ

Case 22. From Table 1, choosing U ¼ csðn; kÞ and V ¼ nsðg; mÞ  csðg; mÞ, respectively, and then from (13), we have

x 4c2

¼ 1;

l1 ¼ 2  k2 ; m1 ¼ 1  k2 ;

x 4a

1 ; 4

¼

l2 ¼

1  2m2 ; 2

1 4

m2 ¼ :

ð98Þ

Substituting (98) into the constraint conditions (14), the parameters can be determined as

k ¼ 0;

x ¼ a; k2 ¼

nb ; 3am2

c2 ¼

a ; 4

ð99Þ

then the complex wave solution to the Eq. (1) is



  4 cotðnÞ 1 ; tanh n nsðg; mÞ  csðg; mÞ

ð100Þ

when m ! 1, the solution (100) turn to be another complex wave solution



  4 cotðnÞ 1 : tanh n cothðgÞ  cschðgÞ

ð101Þ

Case 23. From Table 1, choosing U ¼ csðn; kÞ and V ¼ ncðg; mÞ  scðg; mÞ, respectively, and then from (13), we have

x 4c2

¼ 1;

l1 ¼ 2  k2 ; m1 ¼ 1  k2 ;

x 4a

1  m2 ; 4

¼

l2 ¼

1 þ m2 ; 2

m2 ¼

1  m2 : 4

ð102Þ

Substituting (102) into the constraint conditions (14), the parameters can be determined as

k ¼ 0;

x ¼ að1  m2 Þ; k2 ¼

nbðm2  1Þ ; am2 ðm2 þ 3Þ

c2 ¼

að1  m2 Þ ; 4

ð103Þ

then the complex wave solution to the Eq. (1) is



  4 cotðnÞ 1 : tanh n ncðg; mÞ  scðg; mÞ

ð104Þ

Case 24. From Table 1, choosing U ¼ csðn; kÞ and V ¼ nsðg; mÞ  dsðg; mÞ, respectively, and then from (13), we have

x 4c2

¼ 1;

l1 ¼ 2  k2 ; m1 ¼ 1  k2 ;

x 4a

¼

1 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð105Þ

Substituting (105) into the constraint conditions (14), the parameters can be determined as



pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1  m2 ;

x ¼ a; k2 ¼

4nb ; 3að5  m2 Þ

then the complex wave solution to the Eq. (1) is

c2 ¼

a ; 4

ð106Þ

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172



  4 csðn; kÞ 1 ; tanh n nsðg; mÞ  dsðg; mÞ

169

ð107Þ

The profiles of (107) are shown in Fig. 1(1–7) and (1–8). When m ! 0, the solution (107) turn to be another complex wave solution

  4 1 1 u ¼  tanh cschðnÞ sinðgÞ : n 2

ð108Þ

2

Case 25. From Table 1, choosing U ¼ csðn; kÞ and V ¼ snðg; mÞ  icsðg; mÞ; i ¼ 1, respectively, and then from (13), we have

x 4c2

¼ 1;

x

l1 ¼ 2  k2 ; m1 ¼ 1  k2 ;

4a

¼

m2 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð109Þ

Substituting (109) into the constraint conditions (14), the parameters can be determined as

x ¼ am2 ; k2 ¼

k ¼ 0;

m2 nb ; að4  m2 Þ

c2 ¼

am2 ; 4

ð110Þ

then the complex wave solution to the Eq. (1) is



  4 cotðnÞ 1 ; tanh n snðg; mÞ  icsðg; mÞ

ð111Þ

when m ! 1, the solution (111) turn to be another complex wave solution



  4 cotðnÞ 1 : tanh n tanhðgÞ  icschðgÞ

ð112Þ

Case 26. From Table 1, choosing U ¼ nsðn; kÞ  csðn; kÞ and V ¼ ncðg; mÞ  scðg; mÞ, respectively, and then from (13), we have

x 4c2

¼

1 ; 4

2

l1 ¼

1  2k ; 2

1 4

m1 ¼ ;

x 4a

¼

1  m2 ; 4

l2 ¼

1 þ m2 ; 2

m2 ¼

1  m2 : 4

ð113Þ

Substituting (113) into the constraint conditions (14), the parameters can be determined as 2

k ¼

nb þ ak2 m4  m2 nb ak2 m2 ðm2  1Þ

x ¼ að1  m2 Þ; c2 ¼ að1  m2 Þ;

;

ð114Þ

then the complex wave solution to the Eq. (1) is



  4 nsðn; kÞ  csðn; kÞ 1 : tanh n ncðg; mÞ  scðg; mÞ

ð115Þ

2

Case 27. From Table 1, choosing U ¼ nsðn; kÞ  csðn; kÞ and V ¼ snðg; mÞ  icsðg; mÞ; i ¼ 1 respectively, and then from (13), we have

x 4c2

¼

1 ; 4

2

l1 ¼

1  2k ; 2

1 4

m1 ¼ ;

x 4a

¼

m2 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð116Þ

Substituting (116) into the constraint conditions (14), the parameters can be determined as 2

k ¼

am2 k2 þ m2 nb  ak2 ak2 m2 ðm2  1Þ

x ¼ am2 ; c2 ¼ am2 ;

;

ð117Þ

then the complex wave solution to the Eq. (1) is



  4 nsðn; kÞ  csðn; kÞ 1 : tanh n snðg; mÞ  icsðg; mÞ

ð118Þ

Case 28. From Table 1, choosing U ¼ ncðn; kÞ  scðn; kÞ and V ¼ ncðg; mÞ  scðg; mÞ respectively, and then from (13), we have

x 4c2

2

¼

1k ; 4

2

l1 ¼

1þk ; 2

2

m1 ¼

1k ; 4

x 4a

¼

1  m2 ; 4

l2 ¼

1 þ m2 ; 2

m2 ¼

1  m2 : 4

Substituting (119) into the constraint conditions (14), the parameters can be determined as

ð119Þ

170

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172 2

x ¼ að1  m2 Þ; k2 ¼

nbðk  1Þð1  m2 Þ 2

aðk  m2 Þ

;

c2 ¼

að1  m2 Þ 1k

2

ð120Þ

;

and

k ¼ 1;

x ¼ 0; k2 ¼

m ¼ 1;

nbc

2

ðc2  aÞ

2

ð121Þ

;

then the complex wave solutions to the Eq. (1) are



  4 ncðn; kÞ  scðn; kÞ 1 : tanh n ncðg; mÞ  scðg; mÞ

ð122Þ



  4 1 coshðnÞ  sinhðnÞ ; tanh n coshðgÞ  sinhðgÞ

ð123Þ

and

when k ! 0, the solution (122) turn to be another complex wave solution



  4 secðnÞ  tanðnÞ 1 ; tanh n ncðg; mÞ  scðg; mÞ

ð124Þ

when m ! 0, the solution (122) turn to be another complex wave solution



  4 1 ncðn; kÞ  scðn; kÞ : tanh n secðgÞ  tanðgÞ

ð125Þ

2

Case 29. From Table 1, choosing U ¼ ncðn; kÞ  scðn; kÞ and V ¼ snðg; mÞ  icsðg; mÞ; i ¼ 1, respectively, and then from (13), we have

x 4c2

2

¼

1k ; 4

2

l1 ¼

1þk ; 2

2

m1 ¼

1k ; 4

x 4a

¼

m2 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð126Þ

Substituting (126) into the constraint conditions (14), the parameters can be determined as 2

x ¼ am2 ; k2 ¼

m2 nbðk  1Þ 2

2 2

aðk m4  ð1  k Þ ð1 þ m2 ÞÞ

;

c2 ¼

am2 2

1k

ð127Þ

;

and 2

k ¼ 1;

m ¼ 0;

x ¼ 0; k2 ¼

nbc ;  c2

ð128Þ

a2

then the complex wave solutions to the Eq. (1) are



  4 ncðn; kÞ  scðn; kÞ 1 ; tanh n snðg; mÞ  icsðg; mÞ

ð129Þ



  4 1 coshðnÞ  sinhðnÞ ; tanh n sinðgÞ  i cotðgÞ

ð130Þ

and

when k ! 0, the solution (129) turn to be another complex wave solution



  4 secðnÞ  tanðnÞ 1 ; tanh n snðg; mÞ  icsðg; mÞ

ð131Þ

when m ! 1, the solution (129) turn to be another complex wave solution



  4 ncðn; kÞ  scðn; kÞ 1 : tanh n tanhðgÞ  icschðgÞ

ð132Þ

2

Case 30. From Table 1, choosing U ¼ nsðn; kÞ  dsðn; kÞ and V ¼ snðg; mÞ  icsðg; mÞ; i ¼ 1, respectively, and then from (13), we have

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172

x 4c2

¼

2

1 ; 4

l1 ¼

k 2 ; 2

2

m1 ¼

x

k ; 4

¼

4a

m2 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

171

ð133Þ

Substituting (133) into the constraint conditions (14), the parameters can be determined as

x ¼ am2 ; k2 ¼

k ¼ 1;

m2 nb að1  m2 Þ

2

c2 ¼ am2 ;

;

ð134Þ

then the complex wave solution to the Eq. (1) is



  4 cothðnÞ  cschðnÞ 1 : tanh n snðg; mÞ  icsðg; mÞ

ð135Þ

2

Case 31. From Table 1, choosing U ¼ snðn; kÞ  icsðn; kÞ and V ¼ snðg; mÞ  icsðg; mÞ; i ¼ 1, respectively, and then from (13), we have

x 4c2

2

¼

k ; 4

2

l1 ¼

k 2 ; 2

2

m1 ¼

x

k ; 4

4a

¼

m2 ; 4

l2 ¼

m2  2 ; 2

m2 ¼

m2 : 4

ð136Þ

Substituting (136) into the constraint conditions (14), the parameters can be determined as 2

x ¼ am2 ; k2 ¼

k m2 nb 2

aðk  m2 Þ

2

;

c2 ¼

am2 2

k

;

ð137Þ

;

ð138Þ

and

m ¼ 0;

k ¼ 0;

x ¼ 0; k2 ¼

nbc ðc2

2

 aÞ

2

then the complex wave solutions to the Eq. (1) are



  4 snðn; kÞ  icsðn; kÞ 1 tanh ; n snðg; mÞ  icsðg; mÞ

ð139Þ



  4 1 sinðnÞ  i cotðnÞ ; tanh n sinðgÞ  i cotðgÞ

ð140Þ

and

when k ! 1, the solution (139) turn to be another complex wave solution



  4 tanhðnÞ  icschðnÞ 1 : tanh n snðg; mÞ  icsðg; mÞ

ð141Þ

4. Conclusion In this paper, we obtained many exact solutions of a generalized sinh–Gordon equation, these solutions involve combinations of the arctanh function, Jacobi elliptic functions, hyperbolic functions and trigonometric functions. Compare with Refs. [8,9], most solutions of our results are entirely new. Acknowledgements This research was supported by Natural Science Foundation of Yunnan Province, China (2013FZ117). We thank the referees’ valuable suggestions. References [1] A.M. Wazwaz, The tanh method: exact solutions of the sine–Gordon and the sinh–Gordon equations, Appl. Math. Comput. 167 (2005) 1196–1210. [2] K.W. Chow, A class of doubly periodic waves for nonlinear evolution equations, Wave Motion 35 (2002) 71–90. [3] H.T. Chen, H.C. Yin, Double elliptic equation method and new exact solutions of the (n+1)-dimensional sinh–Gordon equation, J. Math. Phys. 48 (2007) 013504-1–013504-7. [4] J.B. Li, M. Li, Bounded travelling wave solutions for the (n+1)-dimensional sine- and sinh–Gordon equations, Chaos Soliton Fract. 25 (2005) 1037–1047. [5] K. Narita, Deformed sine- and sinh–Gordon equations, deformed Liouville equation, and their discrete models, J. Phys. Soc. Jpn. 72 (2003) 1339–1349. [6] H. Zhang, New exact solutions for the sinh–Gordon equation, Chaos Soliton Fract. 28 (2006) 489–496. [7] Z.T. Fu, S.K. Liu, S.D. Liu, Exact Jacobian elliptic function solutions to sinh–Gordon equation, Commun. Theor. Phys. (Beijing, China) 45 (2006) 55–60. [8] A.M. Wazwaz, Exact solutions for the generalized sine–Gordon and the generalized sinh–Gordon equations, Chaos Soliton Fract. 28 (2006) 127–135.

172

B. He et al. / Applied Mathematics and Computation 229 (2014) 159–172

[9] Y.N. Tang, W. Xu, J.W. Shen, L. Gao, Bifurcations of traveling wave solutions for a generalized Sinh–Gordon equation, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 1048–1055. [10] D.V. Patrick, Elliptic Function and Elliptic Curves, Cambridge University Press, New York, 1973. [11] K. Chamdrasekharan, Elliptic Functions, Springer-Verlag, Berlin, 1985. [12] G.L. Lamb Jr., Elements of Soliton Theory, Wiley, New York, 1980. [13] P.G. Drazin, R.S. Johnson, Solitons: An Introduction, Cambridge University Press, New York, 1989. [14] E. Yomba, A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations, Phys. Lett. A 372 (2008) 1048–1060. [15] W.G. Rui, B. He, Y. Long, The binary F-expansion method and its application for solving the ðn þ 1Þ-dimensional sine–Gordon equation, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 1245–1258.