Niklas Boess, Alexandra Cassano, John Connolly, Sanjukta DuXa ...

Undergraduate   Category:  Physical  and  Life  Sciences   Degree  Level:  BS   Abstract  ID#:  850

  Variant  Polymerase  β  mRNA  Isola4on  and  Introduc4on  to  Biochemistry  Techniques   Niklas  Boess,  Alexandra  Cassano,  John  Connolly,  Sanjukta  DuHa,  Emma  Fridley,  Christopher  Joshi     Abstract  

  Students  in  the  Honors  Strauss  Laboratory  Directed  Study  have   spent  the  spring  semester  learning  basic  techniques  used  in  the   biochemistry  laboratory.  These  include:  proper  pipeHe  use  and   calibraPon,  PtraPons  to  form  important  biological  buffers,  sterile   techniques,  protein  assays,  preparaPon  of  soluPons,  and  proper   creaPon  and  maintenance  of  scienPfic  records.  Students  also   submit  detailed  and  professional  laboratory  reports  every  week  to   demonstrate  criPcal  thinking  and  a  deep  understanding  of  the   theory  behind  their  experiments.       In  addiPon,  the  students  have  learned  the  techniques  necessary  to   isolate  cDNA  of  zebrafish  (Danio  rerio)  DNA  polymerase  ß  (PolB),   which  will  be  further  studied  in  the  laboratory.  These  techniques   include  designing  polymerase  chain  reacPon  (PCR)  primers,   performing  PCR  and  gel  electrophoresis  to  examine  PCR  products,   ligaPng  the  PCR  products  into  an  expression  vector,  transforming   bacteria,  and  preparing  minipreps.  The  PCR  primers  must  be   designed  to  isolate  only  the  desired  PolB  sequence,  and  to   effecPvely  insert  it  into  the  plasmid.       The  Strauss  laboratory  first  discovered  that  a  variant  of  PolB  is   found  in  a  26  kilodalton  form  in  D.  rerio  embryos.  An  analog  of  this   protein  has  been  found  in  mouse  embryos.    Furthermore,   expressed  sequence  tags  (ESTs)  have  been  idenPfied  in  zebrafish,   mouse  and  human  for  this  PolB  form.  PolB  is  involved  in  the  BER   pathway,  and  usually  has  a  mass  of  39  kilodaltons.  The  cDNA   encoding  the  26  kilodalton  form  of  the  protein  will  eventually  be   used  to  create  expression  vectors  for  further  study  of  the  protein  in   early  embryogenesis.  

1                  2                3                    4              5   MW  

 

130     95       70       43           34       26   15      

Figure  1.  

Samples  of  PtraPons  performed  and   analyzed  in  the  laboratory.  From  top-­‐lea  to   boHom:  Hepes  and  HCl,  Hepes  and  NaOH,   AcePc  acid  and  C2H3NaO2.  Red  arrows   indicate  the  pKa.  

Ovalbumin   Ac4n   Bovine  serum   albumin   Lane   1)  Protein  ladder   2)  10  mg/mL  BSA   3)  5  mg/mL  BSA   4)  1  mg/mL  BSA   5)  Zebrafish  lysate  

Figure  4.  

Understanding  the  importance  of  pH  in  biological   reac4ons:  Titra4on  curves  and  pKa  

The  above  photo  depicts  an  SDS-­‐PAGE  gel  run  with  an  unknown   concentraPon  of  zebrafish  lysate  protein.  Bovine  serum  albumin  (BSA),   which  shares  properPes  with  the  zebrafish  protein,  was  used  as  a   comparison.  From  lea  to  right,  the  lanes  contain  a  protein  standard,  10  mg   BSA,  5  mg  BSA,  1  mg  BSA,  and  50  µg  of  zebrafish  lysate.  The  lysate  contains   some  idenPfiable  proteins,  such  as  gelsolin  (90  kDa),  ovalbumin  (45  kDa),   and  acPn  (42  kDa),  all  common  in  eukaryotes.    However,  these  need  to  be   confirmed  by  mass  spec.  

  Understanding  how  pH  and  pKa  work  in  relaPon  to  proteins  and  nucleic  acids,  students   Ptrated  various  biologically  important  acids  with  HCl,  NaOH  and  their  conjugate  bases  (In   this  case,  acetate.)  The  Henderson-­‐Hasselbach  equaPon  was  used  with  the  PtraPon   curves  to  find  the  pKa,  the  equivalence  point  and  the  half  equivalence  point.  

Resolving  proteins  by  SDS-­‐  polyacrylamide   gel  electrophoresis  (SDS-­‐PAGE)  

  Sodium  Dodecyl  Sulfate  Polyacrylamide  Gel  Electrophoresis  is  a  useful   laboratory  procedure  used  to  separate  proteins  based  on  size.       In  SDS-­‐PAGE  a  nega4vely  charged  detergent,  SDS,  coats  and  denatures   proteins  so  that  the  proteins  become  negaPvely  charged  and  linear.  These   proteins  are  loaded  into  a  polyacrylamide  gel,  which  is  placed  in  a  gel  box   with  electric  current  running  from  top  to  boHom.  The  negaPvely-­‐charged   SDS-­‐coated  proteins  are  pulled  through  the  gel  towards  the  posi4ve  pole.   Small  proteins  move  faster  than  large  ones,  so  they  can  be  separated  by   size.  The  gel  is  then  stained  with  Coomassie  blue,  and  analyzed  by   comparing  unknown  proteins  to  a  protein  standard.     The  members  of  Strauss  lab  ran  an  SDS-­‐PAGE  in  order  to  compare  and   tentaPvely  idenPfy  the  proteins  in  zebrafish  lysate.  Lab  members   esPmated  the  lengths  of  the  proteins  by  comparing  them  to  the  molecular   weights  of  the  protein  standards.  With  respect  to  the  final  project,  SDS-­‐ PAGE  can  be  used  to  confirm  the  presence  of  shortened  DNA  PolB  protein.  

Applica4on  of  newly  learned  techniques  to  independent  project:     Clone  the  gene  for  variant  PolB  

Figure  2.  

Gel  electrophoresis  of  pME18s   with  RNF40  insert,  restricted   with  HindIII  and  EcoRI.     Lane   1)     1kb  ladder   2,5)    Uncut  plasmid   3,6)    HindIII  digest   7)          EcoRI  digest   4,8)    HindIII  +  EcoRI  digest  

Introduc4on  

  PreparaPon  for  lab  research  began  last  semester  in  BIOL  2299.  In   this  class,  students  learned  the  basics  of  biological  genePcs,  with   focus  on  the  human  genome.  DNA  replicaPon,  transcripPon,   translaPon,  bacterial  transformaPon,  and  other  biotechnological   techniques  were  explored,  including:  PCR,  SDS-­‐PAGE,  Next  Gen   Sequencing,  and  Sanger  Sequencing  as  well  as  ethical  ramificaPons   of  the  human  genome  project.  The  class  placed  a  strong  emphasis   on  searching  primary  literature  databases  such  as  PubMed  as  well   as  the  gene  and  protein  databases.  Students  also  analyzed  an   unknown  DNA  sequence  and  examined  the  three  dimensional   structure  of  the  protein  that  it  encoded.    Overall,  the  course   introduced  crucial  biological  understandings  and  fostered  a  spirit  of   scienPfic  inquiry.                       This  semester,  the  directed  study  has  implemented  many  of  the   techniques  covered  last  semester  in  class.  Titra4ons  were   conducted  using  acids  or  bases  common  to  biochemistry  labs.  Also,   a  series  of  restric4on  digests  were  used  to  determine  the  size  and   locaPon  of  an  insert  in  a  pME18s  plasmid.  A  Bradford  assay,  using   BSA  as  a  standard,  was  performed  to  determine  the  concentraPon   of  a  zebrafish  protein.  E.  coli  bacteria  were  transformed  and   culPvated  on  agar  plates  before  minipreps  were  performed  to   isolate  the  plasmid.  Lastly,  an  SDS  gel  was  used  to  determine  the   concentraPon  of  zebrafish  protein  in  a  given  sample.  Through  these   laboratory  experiments,  students  learned  the  techniques  necessary   for  complePng  the  final  project,  isolaPng  the  DNA  PolB  variant   found  in  zebrafish  embryos.  

Gelsolin    

The  experiments  performed  thus  far  in  the  directed  study  will  culminate  in  a  final  project  aimed  at  finding  a  novel  zebrafish  gene.  The  Strauss  lab  had   previously  discovered  a  shorter  variant  of  DNA  PolB  in  zebrafish  embryos.  Using  a  cDNA  library,  complementary  primers  can  be  created  that  will  anneal  to   the  target  gene,  and  extract  it  via  PCR.  Running  a  DNA  digest  will  help  confirm  the  idenPfy  of  the  sequence.  Eventually,  the  gene  will  be  cloned  into  an   expression  vector  for  closer  study  of  the  protein.  Aaer  complePon  of  the  final  project,  students  will  have  training  in  the  most  common  biochemistry   laboratory  techniques  and  be  prepared  to  conduct  more  advanced  research  in  academic  or  commercial  labs.  

Data  already  in  hand  (from  Brian  Dobosh)  

Isola4on  of  variant  PolB  cDNA  

  As  a  final  project  for  the  course,  students  will  use  the   skills  and  techniques  learned  throughout  the  semester   to  isolate  cDNA  of  the  29  kilodalton  Danio  rerio  PolB   variant.  This  protein  is  involved  in  the  BER  pathway  for   DNA  repair.  The  protein,  along  with  its  truncated  form,   is  shown  in  Figure  6.  The  isolaPon  will  be  accomplished   by  designing  PCR  primers  analogous  to  both  ends  of   the  desired  cDNA  sequence.  An  important  component   of  primer  design  is  ensuring  that  the  primers  are   complementary  to  restric4on  sites  that  are  on  the   plasmid,  but  are  not  in  the  gene.  The  cDNA  will  then  be   extracted  using  PCR  to  amplify  only  the  desired   sequence.  Once  the  sequence  has  been  isolated,  gel   electrophoresis  will  be  used  to  confirm  that  the   desired  sequence  was  correctly  isolated.  This  PolB   cDNA  will  then  be  cloned  into  an  expression  vector  for   further  study.  

Insert  

Figure  3.  

Plasmid  map  of  pME18s  with   RNF40  insert,  with  predicted   locaPon  of  insert.  

Figure  5:  qRT  PCR  comparing  transcripts   from  early  and  late  embryos.  

Plasmid  

Resolving  DNA  fragments  by  agarose  gel   electrophoresis  

  In  order  to  fully  understand  gel  electrophoresis  and  its  applicaPons,  members  of  the  lab   were  tasked  with  finding  the  length  of  an  insert  in  pME18S  plasmid.  The  reported  length   of  the  plasmid  is  3392  base  pairs  (bp).  Each  member  of  the  lab  chose  two  restricPon   endonucleases  with  which  to  esPmate  the  length  of  the  insert.  Aaer  preparing  the   digest,  lab  members  ran  gel  electrophoresis  to  quanPfy  the  length  of  DNA  fragments   produced.  Based  upon  the  results  recorded,  we  found  that  the  insert  was  roughly  3100   bp  in  length,  and  was  located  between  the  two  XhoI  sites  on  the  plasmid  (see  Figure  3).    

Graph  of  the  PolB  variants,  shown  with  exons  1,  3,  4,  5,   13,  and  14.  This  shows  that  the  difference  between  the   transcripts  at  1.5  and  24  hpf  at  the  5’  end  of  the  gene   and  the  3’  end  of  the  gene.  

Figure  6.  

DNA  PolB  comparison  of  full-­‐length  protein  sequence   and  truncated  form  found  in  early  embryos.  

References  and  Acknowledgements  

  Brunelle,  J.L.  and  Green,  L.  Chapter  twelve–  one  dimensional  SDS-­‐Polyacrylamide  Gel  Electrophoresis  Methods  in  Enzymology  541,   151-­‐159.     ForPer,  S.,  Yang,  X.,  Bennet,  R.A.O.,  Wang,  Y.  and  Strauss,  P.R.  Base  excision  repair  in  early  zebrafish  development:  evidence  for  DNA   polymerase  switching  and  standby  AP  nuclease  acPvity  Biochemistry  48,  5496-­‐5405.     Pei,  D.,  Yang,  X.,  Liu,  W.,  Guikema,  J.E.J,  Schrader,  C.E.  and  Strauss,  P.R.  A  novel  regulatory  circuit  in  base  excision  repair  involving  AP   endonuclease  1,  Creb  1  and  DNA  polymerase  β  Nucleic  Acids  Res.  39,  3156-­‐3165.     Dobosh,  Brian.  PolB  graph  and  protein  with  exons  schema.  

 

Each  of  us  parPcipaPng  in  the  Honors  Directed  Study  would  also  like  to  thank  Professor  Phyllis  Strauss  for  her  dedicaPon  to  mentoring   us  throughout  the  semester  and  providing  us  with  such  an  incredible  opportunity.  

Contact  informa4on   Niklas  Boess:  [email protected]   Alexandra  Cassano:  [email protected]   John  Connolly:  [email protected]   Sanjukta  DuHa:  [email protected]   Emma  Fridley:  [email protected]   Christopher  Joshi:  [email protected]        

  Professor  Phyllis  Strauss:   [email protected]   617-­‐373-­‐3492     106  Lake  Hall    

Recommend Documents