Nonparametric Independence Testing for Small Sample Sizes

Report 1 Downloads 84 Views
Nonparametric Independence Testing for Small Sample Sizes Aaditya Ramdas, Leila Wehbe (IJCAI-2015)

Zolt´ an Szab´ o

Machine Learning Journal Club, Gatsby Unit April 4, 2016

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

One-page summary

Goal: nonparametric independence testing.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

One-page summary

Goal: nonparametric independence testing. Idea: 1

large cov (X , Y ) ⇒ declare dependence.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

One-page summary

Goal: nonparametric independence testing. Ideas: 1 2

large cov (X , Y ) ⇒ declare dependence. large supf ∈F,g ∈G cov (f (X ), g (Y )) ⇒ dependence nice asymptotic results.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

One-page summary

Goal: nonparametric independence testing. Ideas: 1 2

large cov (X , Y ) ⇒ declare dependence. large supf ∈F,g ∈G cov (f (X ), g (Y )) ⇒ dependence nice asymptotic results.

Focus: small sample size, small false positive regime: ’avoid’ false dependence detection.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

One-page summary

Goal: nonparametric independence testing. Ideas: 1 2

large cov (X , Y ) ⇒ declare dependence. large supf ∈F,g ∈G cov (f (X ), g (Y )) ⇒ dependence nice asymptotic results.

Focus: small sample size, small false positive regime: ’avoid’ false dependence detection.

Trick: introduce some bias to reduce variance - Stein. large shrunk[ supf ∈F,g ∈G cov (f (X ), g (Y ))] ⇒ dependence

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Ingredients: independence testing problem

i .i .d.

Given: {(xi , yi )}ni=1 ∼ PXY . Marginals of PXY : PX , PY . Hypotheses: H0 : PXY = PX × PY ,

Zolt´ an Szab´ o

H1 : PXY 6= PX × PY .

Nonparametric Independence Testing for Small Sample Sizes

Ingredients: independence testing problem

i .i .d.

Given: {(xi , yi )}ni=1 ∼ PXY . Marginals of PXY : PX , PY . Hypotheses: H0 : PXY = PX × PY ,

H1 : PXY 6= PX × PY .

Aim: 1

Low type-I error = P(detect dependence, when there isn’t any) ≤ α, {z } | false positive

2

High power = P(detect dependence, when there is).

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Ingredients: cross-covariance X ∈ (X, k), Y ∈ (Y, ℓ), k, ℓ: kernels. RKHSs: Hk , Hℓ .

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Ingredients: cross-covariance X ∈ (X, k), Y ∈ (Y, ℓ), k, ℓ: kernels. RKHSs: Hk , Hℓ . Mean embedding and its empirical counterpart: µX = Ex∼PX k(·, x), | {z }

µY = Ey ∼PY ℓ(·, y ), | {z }

i =1

i =1

=:φ(x)

µ ˆX =

1 n

n X

φ(xi ),

Zolt´ an Szab´ o

=:ψ(y )

µ ˆY =

1 n

n X

ψ(yi ).

Nonparametric Independence Testing for Small Sample Sizes

Ingredients: cross-covariance X ∈ (X, k), Y ∈ (Y, ℓ), k, ℓ: kernels. RKHSs: Hk , Hℓ . Mean embedding and its empirical counterpart: µX = Ex∼PX k(·, x), | {z }

µY = Ey ∼PY ℓ(·, y ), | {z }

i =1

i =1

=:φ(x)

µ ˆX =

n X

1 n

φ(xi ),

=:ψ(y )

µ ˆY =

1 n

n X

ψ(yi ).

Cross-covariance: ΣXY = E(x,y )∼PXY [φ(x) − µX ] ⊗ [ψ(y ) − µY ] : Hℓ → Hk , | {z } | {z } ˜ =:φ(x)

SXY =

1 n

˜ ) =:ψ(y

n X

[φ(xi ) − µ ˆX ] ⊗ [ψ(yi ) − µ ˆY ].

i =1

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Cross-covariance as an independence measure Known: hf , ΣXY g iHk = cov (f (X ), g (Y )), ∀g ∈ Hℓ , f ∈ Hk . Are Hℓ and Hk enough for the independence testing of X and Y ?

Yes ⇒ Test: ΣXY = 0. Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Cross-covariance as an independence measure Known: hf , ΣXY g iHk = cov (f (X ), g (Y )), ∀g ∈ Hℓ , f ∈ Hk . Are Hℓ and Hk enough for the independence testing of X and Y ? Cb (X) and Cb (Y) would be sufficient: Jacod and Protter 2000.

Yes ⇒ Test: ΣXY = 0. Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Cross-covariance as an independence measure Known: hf , ΣXY g iHk = cov (f (X ), g (Y )), ∀g ∈ Hℓ , f ∈ Hk . Are Hℓ and Hk enough for the independence testing of X and Y ? Cb (X) and Cb (Y) would be sufficient: Jacod and Protter 2000. Trick [Gretton et al. ’05]: guarantee the denseness of Hk in Cb (X), Hℓ in Cb (Y).

Yes ⇒ Test: ΣXY = 0. Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Cross-covariance as an independence measure Known: hf , ΣXY g iHk = cov (f (X ), g (Y )), ∀g ∈ Hℓ , f ∈ Hk . Are Hℓ and Hk enough for the independence testing of X and Y ? Cb (X) and Cb (Y) would be sufficient: Jacod and Protter 2000. Trick [Gretton et al. ’05]: guarantee the denseness of Hk in Cb (X), Hℓ in Cb (Y). Space: compact metric, kernel: universal X

Yes ⇒ Test: ΣXY = 0. Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Cross-covariance as an independence measure Known: hf , ΣXY g iHk = cov (f (X ), g (Y )), ∀g ∈ Hℓ , f ∈ Hk . Are Hℓ and Hk enough for the independence testing of X and Y ? Cb (X) and Cb (Y) would be sufficient: Jacod and Protter 2000. Trick [Gretton et al. ’05]: guarantee the denseness of Hk in Cb (X), Hℓ in Cb (Y). Space: compact metric, kernel: universal X Examples: ′ 2

k(x, x′ ) = e −γkx−x k2 ,



k(x, x′ ) = e −γkx−x k1 .

Yes ⇒ Test: ΣXY = 0. Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Side-note

ΣXY ∈ HS(Hℓ , Hk ) =: HS(G, F). What does this mean? Extension of Frobenious norm.

kC k2F =

X

Cij 2

i ,j

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Side-note

ΣXY ∈ HS(Hℓ , Hk ) =: HS(G, F). What does this mean? Extension of Frobenious norm.

kC k2F =

X

Cij 2 ,

i ,j

kC k2HS

=

X

hCgj , fi i2F < ∞,

i ,j

where C : G → F bounded linear operator. G, F are separable Hilbert spaces with ONBs {gj }j , {fi }i .

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

HS operator example: f ⊗ g

Intuition: fgT . (fgT )u = f (gT u). | {z } =hg,ui

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

HS operator example: f ⊗ g

Intuition: fgT . (fgT )u = f (gT u). | {z } =hg,ui

Outer product: f ⊗ g (f ∈ F, g ∈ G) (f ⊗ g )(u) = f hg , uiG , ∀u ∈ G.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

HS operator example: f ⊗ g

Intuition: fgT . (fgT )u = f (gT u). | {z } =hg,ui

Outer product: f ⊗ g (f ∈ F, g ∈ G) (f ⊗ g )(u) = f hg , uiG , ∀u ∈ G. HS norm of f ⊗ g : kf ⊗ g k2HS = hf , f iF hg , g iG . Cross-covariance: made of f ⊗ g -type quantities.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

HSIC 2 It is easy to compute kΣXY kHS =: HSIC.

HSIC =

kΣXY k2HS

=

*

+ n n X 1X˜ 1 ˜ i ), ˜ j ) ⊗ ψ(y ˜ j) φ(xi ) ⊗ ψ(y φ(x n n i =1

Zolt´ an Szab´ o

j=1

HS

Nonparametric Independence Testing for Small Sample Sizes

HSIC 2 It is easy to compute kΣXY kHS =: HSIC.

HSIC =

kΣXY k2HS

=

=

*

+ n n X 1X˜ 1 ˜ i ), ˜ j ) ⊗ ψ(y ˜ j) φ(xi ) ⊗ ψ(y φ(x n n

1 n2

i =1 n D X

j=1

HS

E

˜ i ) ⊗ ψ(y ˜ i ), φ(x ˜ j ) ⊗ ψ(y ˜ j) φ(x HS {z } | i ,j=1 ˜ ˜ ˜ ˜ ˜ ˜ φ(x ), φ(x ) ψ(y ), ψ(y ) K L = h i j iH h i j iH ij ij k ℓ

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

HSIC 2 It is easy to compute kΣXY kHS =: HSIC.

HSIC =

kΣXY k2HS

=

*

+ n n X 1X˜ 1 ˜ i ), ˜ j ) ⊗ ψ(y ˜ j) φ(xi ) ⊗ ψ(y φ(x n n

1 n2

i =1 n D X

j=1

HS

E

˜ i ) ⊗ ψ(y ˜ i ), φ(x ˜ j ) ⊗ ψ(y ˜ j) φ(x HS {z } | i ,j=1 ˜ ˜ ˜ ˜ ˜ ˜ φ(x ), φ(x ) ψ(y ), ψ(y ) K L = h i j iH h i j iH ij ij k ℓ E D 1 ˜ ˜ = 2 K, L . n F

=

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

HSIC 2 It is easy to compute kΣXY kHS =: HSIC.

HSIC =

kΣXY k2HS

=

*

+ n n X 1X˜ 1 ˜ i ), ˜ j ) ⊗ ψ(y ˜ j) φ(xi ) ⊗ ψ(y φ(x n n

1 n2

i =1 n D X

j=1

HS

E

˜ i ) ⊗ ψ(y ˜ i ), φ(x ˜ j ) ⊗ ψ(y ˜ j) φ(x HS {z } | i ,j=1 ˜ ˜ ˜ ˜ ˜ ˜ φ(x ), φ(x ) ψ(y ), ψ(y ) K L = h i j iH h i j iH ij ij k ℓ E D 1 ˜ ˜ = 2 K, L . n F

=

˜ = HKH, H = In − 1 11T , L ˜ = HLH. K n Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Independence test using HSIC [Gretton et al. 2005]

Given: samples and α ∈ (0, 1). Test statistics: T = HSIC = kΣXY k2HS . Simulated null distribution of T : via {y1 , . . . , yn } permutations ⇒ tα . Decision: reject H0 if tα < T .

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Observation

SXY is unbiased estimator of ΣXY : E[SXY ] = ΣXY . Issue: SXY can have high variance for small sample numbers.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Observation

SXY is unbiased estimator of ΣXY : E[SXY ] = ΣXY . Issue: SXY can have high variance for small sample numbers. Idea [Stein, 1956]: decrease the variance by adding some bias.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Observation

SXY is unbiased estimator of ΣXY : E[SXY ] = ΣXY . Issue: SXY can have high variance for small sample numbers. Idea [Stein, 1956]: decrease the variance by adding some bias. [Maundet et al. 2014]: 2 shrinkage based estimators.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Observation

SXY is unbiased estimator of ΣXY : E[SXY ] = ΣXY . Issue: SXY can have high variance for small sample numbers. Idea [Stein, 1956]: decrease the variance by adding some bias. [Maundet et al. 2014]: 2 shrinkage based estimators. Questions 1 How do they perform in independence testing? 2

Optimality?

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Variations: shrinking towards zero Recall: SXY =

1 n

Pn

SXY =

˜

i =1 φ(xi ) ⊗

˜ i) ⇒ ψ(y

n

2 1 X

˜ ˜ i) − Z

.

φ(xi ) ⊗ ψ(y HS Z ∈HS(Hℓ ,Hk ) n

arg min

i =1

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Variations: shrinking towards zero Recall: SXY =

1 n

Pn

SXY =

˜

i =1 φ(xi ) ⊗

˜ i) ⇒ ψ(y

n

2 1 X

˜ ˜ i) − Z

.

φ(xi ) ⊗ ψ(y HS Z ∈HS(Hℓ ,Hk ) n

arg min

i =1

SCOSE (simple covariance shrinkage estimator, λ > 0): n

2 1 X

˜ 2 S ˜ i) − Z SXY = arg min

φ(xi ) ⊗ ψ(y

+ λ kZ kHS . HS Z ∈HS(Hℓ ,Hk ) n i =1

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Variations: shrinking towards zero Recall: SXY =

1 n

Pn

SXY =

˜

i =1 φ(xi ) ⊗

˜ i) ⇒ ψ(y

n

2 1 X

˜ ˜ i) − Z

.

φ(xi ) ⊗ ψ(y HS Z ∈HS(Hℓ ,Hk ) n

arg min

i =1

SCOSE (simple covariance shrinkage estimator, λ > 0): n

2 1 X

˜ 2 S ˜ i) − Z SXY = arg min

φ(xi ) ⊗ ψ(y

+ λ kZ kHS . HS Z ∈HS(Hℓ ,Hk ) n i =1

FCOSE (flexible covariance shrinkage estimator): F = SXY

n X βj j=1

n

˜ j ) ⊗ ψ(y ˜ j ), φ(x

2

n n X X

β 1 j ˜ i ) ⊗ ψ(y ˜ i) − ˜ j ) ⊗ ψ(y ˜ j ) + λ kβk2 .

φ(x φ(x β = arg min 2

n n β

j=1 i =1 HS

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

SCOSE vs FCOSE

In both cases: λ is chosen via leave-one-out CV. SCOSE: analytical formula for λ∗ 

2

S HSIC S = SXY

= 1 − HS

Zolt´ an Szab´ o

1 n

Pn

˜ ˜ i =1 Kii Lii − HSIC

(n − 2)HSIC +

1 n

Pn

i =1

n

˜ ii L ˜ii K

2

 HSIC . +

Nonparametric Independence Testing for Small Sample Sizes

SCOSE vs FCOSE

In both cases: λ is chosen via leave-one-out CV. SCOSE: analytical formula for λ∗ 

2

S HSIC S = SXY

= 1 − HS

1 n

Pn

˜ ˜ i =1 Kii Lii − HSIC

(n − 2)HSIC +

1 n

Pn

i =1

n

˜ ◦L ˜ [O(n3 )], ’/λ’: O(n2 ). FCOSE: after SVD of K

Zolt´ an Szab´ o

˜ ii L ˜ii K

2

 HSIC . +

Nonparametric Independence Testing for Small Sample Sizes

SCOSE vs FCOSE

In both cases: λ is chosen via leave-one-out CV. SCOSE: analytical formula for λ∗ 

2

S HSIC S = SXY

= 1 − HS

1 n

Pn

˜ ˜ i =1 Kii Lii − HSIC

(n − 2)HSIC +

1 n

Pn

i =1

n

˜ ◦L ˜ [O(n3 )], ’/λ’: O(n2 ). FCOSE: after SVD of K

˜ ii L ˜ii K

2

 HSIC . +

Statement SCOSE is (essentially) the oracle linear shrinkage estimator w.r.t. the quadratic loss.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Oracle estimator: linear shrinkage, quadratic loss

Proposition (S ∗ , ρ∗ ) :=

arg min Z ∈HS(Hℓ ,Hk ),Z =(1−ρ)SXY ,ρ∈[0,1]

E kZ − ΣXY k2HS .



S = (1 − ρ∗ )SXY , ρ∗ =

E kSXY − ΣXY k2HS E kSXY k2HS

.

Intuition: we shrink SXY towards zero, optimally in quadratic sense.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Indeed Using E[SXY ] = ΣXY : E kZ − ΣXY k2HS = E k(1 − ρ)SXY − ΣXY k2HS = = E k−ρSXY + (SXY − ΣXY )k2HS

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Indeed Using E[SXY ] = ΣXY : E kZ − ΣXY k2HS = E k(1 − ρ)SXY − ΣXY k2HS = = E k−ρSXY + (SXY − ΣXY )k2HS = ρ2 E kSXY k2HS + E kSXY − ΣXY k2HS −2ρ E hSXY , SXY − ΣXY iHS | | {z } {z } EkSXY k2HS −kΣXY k2HS

Zolt´ an Szab´ o

EkSXY k2HS −kΣXY k2HS

Nonparametric Independence Testing for Small Sample Sizes

Indeed Using E[SXY ] = ΣXY : E kZ − ΣXY k2HS = E k(1 − ρ)SXY − ΣXY k2HS = = E k−ρSXY + (SXY − ΣXY )k2HS = ρ2 E kSXY k2HS + E kSXY − ΣXY k2HS −2ρ E hSXY , SXY − ΣXY iHS | | {z } {z } EkSXY k2HS −kΣXY k2HS

EkSXY k2HS −kΣXY k2HS

= ρ2 E kSXY k2HS + (1 − 2ρ)E kSXY − ΣXY k2HS =: J(ρ).

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Indeed Using E[SXY ] = ΣXY : E kZ − ΣXY k2HS = E k(1 − ρ)SXY − ΣXY k2HS = = E k−ρSXY + (SXY − ΣXY )k2HS = ρ2 E kSXY k2HS + E kSXY − ΣXY k2HS −2ρ E hSXY , SXY − ΣXY iHS | | {z } {z } EkSXY k2HS −kΣXY k2HS

EkSXY k2HS −kΣXY k2HS

= ρ2 E kSXY k2HS + (1 − 2ρ)E kSXY − ΣXY k2HS =: J(ρ).

Optimizing in ρ: 0= J ′ (ρ) = 2ρE kSXY k2HS − 2E kSXY − ΣXY k2HS ⇒ ρ∗ =

E kSXY − ΣXY k2HS E kSXY k2HS

Zolt´ an Szab´ o

.

Nonparametric Independence Testing for Small Sample Sizes

Plug-in estimator ρ∗ =

E kSXY − ΣXY k2HS E kSXY k2HS

=

β , δ

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Plug-in estimator ρ∗ =

E kSXY − ΣXY k2HS E kSXY k2HS

=

β b , δ = kSXY k2HS = HSIC , δ

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Plug-in estimator ρ∗ =

E kSXY − ΣXY k2HS

β b , δ = kSXY k2HS = HSIC , δ

2 i 2 1

˜

˜ i ) ⊗ φ(y ˜ i ) − ΣXY ˜ φ(x

= E φ(x i ) ⊗ φ(yi ) − ΣXY

n HS

E kSXY k2HS n h X

1

β = E

n

i =1

=

HS

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Plug-in estimator ρ∗ =

E kSXY − ΣXY k2HS

β b , δ = kSXY k2HS = HSIC , δ

2 i 2 1

˜

˜ i ) ⊗ φ(y ˜ i ) − ΣXY ˜ φ(x

= E φ(x i ) ⊗ φ(yi ) − ΣXY

n HS

E kSXY k2HS n h X

1

β = E

n

i =1 n X

=

HS

2 1

˜ ˜ i ) − SXY ≈ 2

φ(xi ) ⊗ ψ(y n HS | {z } i =1 2 ˜ ii L ˜ii +kSXY k −2hφ(x ˜ i )⊗ψ(y ˜ i ),SXY i K HS HS

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Plug-in estimator ρ∗ =

E kSXY − ΣXY k2HS

β b , δ = kSXY k2HS = HSIC , δ

2 i 2 1

˜

˜ i ) ⊗ φ(y ˜ i ) − ΣXY ˜ φ(x

= E φ(x i ) ⊗ φ(yi ) − ΣXY

n HS

E kSXY k2HS n h X

1

β = E

n

i =1 n X

=

HS

2 1

˜ ˜ i ) − SXY ≈ 2

φ(xi ) ⊗ ψ(y n HS | {z } i =1 2 ˜ ii L ˜ii +kSXY k −2hφ(x ˜ i )⊗ψ(y ˜ i ),SXY i K HS HS n h i 1 1X˜ ˜ b Kii Lii + kSXY k2HS − 2 kSXY k2HS =: β, = n n | {z } i =1

−kSXY k2HS =−HSIC

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Plug-in estimator ρ∗ =

E kSXY − ΣXY k2HS

β b , δ = kSXY k2HS = HSIC , δ

2 i 2 1

˜

˜ i ) ⊗ φ(y ˜ i ) − ΣXY ˜ φ(x

= E φ(x i ) ⊗ φ(yi ) − ΣXY

n HS

E kSXY k2HS n h X

1

β = E

n

i =1 n X

=

HS

2 1

˜ ˜ i ) − SXY ≈ 2

φ(xi ) ⊗ ψ(y n HS | {z } i =1 2 ˜ ii L ˜ii +kSXY k −2hφ(x ˜ i )⊗ψ(y ˜ i ),SXY i K HS HS n h i 1 1X˜ ˜ b Kii Lii + kSXY k2HS − 2 kSXY k2HS =: β, = n n | {z } i =1

\∗ = ⇒HSIC

−kSXY k2HS =−HSIC

1−

1 n

Pn

˜ ˜ − HSIC nHSIC

i =1 Kii Lii

Zolt´ an Szab´ o

!2

HSIC .

Nonparametric Independence Testing for Small Sample Sizes

Comparison

SCOSE: 

HSIC S = 1 −

1 n

Pn

˜ ˜ i =1 Kii Lii − HSIC

(n − 2)HSIC +

1 n

Pn

i =1

˜ ii L ˜ii K

n

Oracle estimator with plug-in: \∗ = HSIC

1−

1 n

Pn

˜ ˜ i =1 Kii Lii − HSIC nHSIC

2

 HSIC . +

!2

HSIC .

SCOSE ≈ oracle with perturbed plug-in.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Numerical experiments Shrinkage usually improves power.

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Numerical experiments Shrinkage usually improves power. FCOSE: often achieves better power → non-linear shrinkage?, non-quadratic loss?

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Numerical experiments Shrinkage usually improves power. FCOSE: often achieves better power → non-linear shrinkage?, non-quadratic loss? Soft HSIC shrinkage:

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes

Thank you for the attention!

Zolt´ an Szab´ o

Nonparametric Independence Testing for Small Sample Sizes