Note on the size of binary Armstrong codes - Semantic Scholar

Report 0 Downloads 82 Views
Note on the size of binary Armstrong codes

A.E. Brouwer1 1 Eindhoven

A. Blokhuis1

A. Sali2

University of Technology

2 Alfréd

Rényi Institute of Mathematics Hungarian Academy of Sciences

Tuesday, June 11th 2013.

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

1 / 20

q; k; n)

Arm(

Denition

An Armstrong code Arm(q ; k ; n ) is a code of length n over an alphabet of size q with minimum Hamming distance d = n k + 1 and the additional property that for every subset of size k 1 = n d of the coordinate positions there are two codewords that agree there (so the minimum distance occurs `in all directions').

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

2 / 20

Origins, examples

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

3 / 20

Origins, examples

The code consisting of the rows of an n by n identity matrix is an Arm(q ; n 1; n ) for all q .

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

3 / 20

Origins, examples

The code consisting of the rows of an n by n identity matrix is an Arm(q ; n 1; n ) for all q .

The code of the n + 1 vectors ci = (1; : : : ; 1; 0; : : : ; 0) with i ones followed by n i zeroes is an Arm(q ; n ; n ) for all q .

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

3 / 20

Origins, examples

The code consisting of the rows of an n by n identity matrix is an Arm(q ; n 1; n ) for all q .

The code of the n + 1 vectors ci = (1; : : : ; 1; 0; : : : ; 0) with i ones followed by n i zeroes is an Arm(q ; n ; n ) for all q . An Arm(2; 7; 10) can be constructed by taking a Steiner system S (3; 4; 10) and adding the all-0 vector.

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

3 / 20

Origins, examples

The code consisting of the rows of an n by n identity matrix is an Arm(q ; n 1; n ) for all q .

The code of the n + 1 vectors ci = (1; : : : ; 1; 0; : : : ; 0) with i ones followed by n i zeroes is an Arm(q ; n ; n ) for all q . An Arm(2; 7; 10) can be constructed by taking a Steiner system S (3; 4; 10) and adding the all-0 vector.

Armstrong codes have their origin in Database Theory.

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

3 / 20

Earlier results

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

4 / 20

Earlier results

Let f (q ; k ) = maxfn : Arm(q ; k ; n ) existsg.

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

4 / 20

Earlier results

Let f (q ; k ) = maxfn : Arm(q ; k ; n ) existsg.

Proposition (G.O.H. Katona, K.-D. Schewe, S.) f (q ; 2) =

q +1 and 2

3q

Blokhuis, Brouwer, Sali (TUE,Renyi)

2  f (q ; 3)  3q

Binary Armstrong codes

1.

June 11. 2013

4 / 20

Earlier results

Let f (q ; k ) = maxfn : Arm(q ; k ; n ) existsg.

Proposition (G.O.H. Katona, K.-D. Schewe, S.) f (q ; 2) =

q +1 and 2

3q

2  f (q ; 3)  3q

Proposition (L. Székely, S.) pq e k

< f (q ; k ) < (q

log q )k for k

Blokhuis, Brouwer, Sali (TUE,Renyi)

1.

> k0 (q ) and q > 3

Binary Armstrong codes

June 11. 2013

4 / 20

Earlier results

Let f (q ; k ) = maxfn : Arm(q ; k ; n ) existsg.

Proposition (G.O.H. Katona, K.-D. Schewe, S.) f (q ; 2) =

q +1 and 2

3q

2  f (q ; 3)  3q

Proposition (L. Székely, S.) pq e k

< f (q ; k ) < (q

log q )k for k

1.

> k0 (q ) and q > 3

The construction is probabilistic using Lovász Local Lemma, the upper bound is obtained by embedding into an Euclidean sphere and using Rankin's bound for spherical codes.

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

4 / 20

Armstrong codes Arm(2;

Blokhuis, Brouwer, Sali (TUE,Renyi)

k; n)

for

Binary Armstrong codes

k

n

3

June 11. 2013

5 / 20

Armstrong codes Arm(2;

Arm(2; n ; n ) and Arm(2; n

Blokhuis, Brouwer, Sali (TUE,Renyi)

k; n)

for

k

n

1; n ) exists for all n

Binary Armstrong codes

3

> 0.

June 11. 2013

5 / 20

Armstrong codes Arm(2;

Arm(2; n ; n ) and Arm(2; n

Proposition (A. Keszler) Arm(2; n

k; n)

k

n

1; n ) exists for all n

2; n ) does not exist for n

Blokhuis, Brouwer, Sali (TUE,Renyi)

for

3

> 0.

 8.

Binary Armstrong codes

June 11. 2013

5 / 20

Armstrong codes Arm(2;

Arm(2; n ; n ) and Arm(2; n

Proposition (A. Keszler) Arm(2; n

Theorem

k; n)

n

3

> 0.

 8.

2; n ) exists if and only if n

Blokhuis, Brouwer, Sali (TUE,Renyi)

k

1; n ) exists for all n

2; n ) does not exist for n

An Arm(2; n

for

Binary Armstrong codes

 9.

June 11. 2013

5 / 20

Armstrong codes Arm(2;

Arm(2; n ; n ) and Arm(2; n

Proposition (A. Keszler) Arm(2; n

Theorem

k; n)

n

3

> 0.

 8.

2; n ) exists if and only if n 3; n ) exists if and only if n

Blokhuis, Brouwer, Sali (TUE,Renyi)

k

1; n ) exists for all n

2; n ) does not exist for n

An Arm(2; n An Arm(2; n

for

Binary Armstrong codes

 9.  10.

June 11. 2013

5 / 20

Armstrong codes Arm(2;

Arm(2; n ; n ) and Arm(2; n

Proposition (A. Keszler) Arm(2; n

Theorem

k; n)

k

n

1; n ) exists for all n

2; n ) does not exist for n

An Arm(2; n An Arm(2; n

for

3

> 0.

 8.

2; n ) exists if and only if n 3; n ) exists if and only if n

 9.  10.

By deleting one coordinate position in an Arm(q ; k ; n ), one obtains an Arm(q ; k ; n 1). The existence of an Arm(2; n 2; n ) for n  9 follows from that of an Arm(2; n 3; n ) for n  10.

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

5 / 20

Skeleton code method

Let n  23. Construct an (n ; n ; 12)-code from a Hadamard matrix of order 4t , where n  4t  2n 22.

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

6 / 20

Skeleton code method

Let n  23. Construct an (n ; n ; 12)-code from a Hadamard matrix of order 4t , where n  4t  2n 22. Partition the quadruples from an n -set into n collections such that two quadruples in the same collection intersect in at most 2 elements by putting quadruple fp ; q ; r ; s g in collection Ti if p + q + r + s  i (mod n ).

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

6 / 20

Skeleton code method

Let n  23. Construct an (n ; n ; 12)-code from a Hadamard matrix of order 4t , where n  4t  2n 22. Partition the quadruples from an n -set into n collections such that two quadruples in the same collection intersect in at most 2 elements by putting quadruple fp ; q ; r ; s g in collection Ti if p + q + r + s  i (mod n ).

Let C = f~c0 ; : : : ;~cn 1 g be an (n ; n ; 12)-code. Construct an Arm(2; n 3; n ) by taking the code words in C together with the words ~ci + ~t for every T 2 Ti , where ~t is the characteristic vector of T .

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

6 / 20

Smaller

n

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

7 / 20

Smaller

n

For 14  n  16, look at the 2165 extended perfect (16; 2048; 4)-codes (classied in Östergård, P. R. J., and Pottonen, O., The perfect binary one-error-correcting codes of length 15: Part IClassication. arXiv:0806.2513, Dec 2009.). Five of these (numbers 2099, 2108, 2121, 2122 and 2124) are Armstrong. Appropriate shortenings give Armstrong codes for n = 15 and n = 14 (but not for n = 13).

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

7 / 20

Smaller

n

For 14  n  16, look at the 2165 extended perfect (16; 2048; 4)-codes (classied in Östergård, P. R. J., and Pottonen, O., The perfect binary one-error-correcting codes of length 15: Part IClassication. arXiv:0806.2513, Dec 2009.). Five of these (numbers 2099, 2108, 2121, 2122 and 2124) are Armstrong. Appropriate shortenings give Armstrong codes for n = 15 and n = 14 (but not for n = 13). For 14  n  22 Armstrong codes can be obtained by computer, using a greedy procedure.

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

7 / 20

Smaller

n

For 14  n  16, look at the 2165 extended perfect (16; 2048; 4)-codes (classied in Östergård, P. R. J., and Pottonen, O., The perfect binary one-error-correcting codes of length 15: Part IClassication. arXiv:0806.2513, Dec 2009.). Five of these (numbers 2099, 2108, 2121, 2122 and 2124) are Armstrong. Appropriate shortenings give Armstrong codes for n = 15 and n = 14 (but not for n = 13). For 14  n  22 Armstrong codes can be obtained by computer, using a greedy procedure. For n = 11; 12; 13, a randomized version of greedy procedure works.

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

7 / 20

A lower bound

For general k we have the following. Recall that d

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

=n

k + 1.

June 11. 2013

8 / 20

A lower bound

For general k we have the following. Recall that d

=n

k + 1.

Theorem (G.O.H. Katona, K.-D. Schewe, S.) An Arm(2; k ; n ) exists when n

Blokhuis, Brouwer, Sali (TUE,Renyi)

 9:09d ( () n  1:12k ).

Binary Armstrong codes

June 11. 2013

8 / 20

A lower bound

For general k we have the following. Recall that d

=n

k + 1.

Theorem (G.O.H. Katona, K.-D. Schewe, S.) An Arm(2; k ; n ) exists when n

 9:09d ( () n  1:12k ).

Proof idea 2 Arm(2; k ; n ) exists when d nd 2n 2 by greedy construction. And this holds when d 1 and n ad with a 9:08861.



Blokhuis, Brouwer, Sali (TUE,Renyi)







Binary Armstrong codes

June 11. 2013

8 / 20

Previous upper bound

Theorem (G.O.H. Katona, K.-D. Schewe, S.)

If an Arm(2; k ; n ) exists, and k n 2d ).



Blokhuis, Brouwer, Sali (TUE,Renyi)

 7, then n  2(k

Binary Armstrong codes

1) (that is,

June 11. 2013

9 / 20

A connection with constant weight codes

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

10 / 20

A connection with constant weight codes

Proposition

Let A(n ; d ) and A(n ; d ; w ) denote the maximum size of a binary code of word length n , minimum distance d (and constant weight w ). Suppose an Arm(2; k ; n ) exists. Then

2

Blokhuis, Brouwer, Sali (TUE,Renyi)

n d

!

 A(n ; d )A(n ; d ; d ):

Binary Armstrong codes

June 11. 2013

10 / 20

A connection with constant weight codes

Proposition

Let A(n ; d ) and A(n ; d ; w ) denote the maximum size of a binary code of word length n , minimum distance d (and constant weight w ). Suppose an Arm(2; k ; n ) exists. Then

2

n d

!

 A(n ; d )A(n ; d ; d ):

Proof. If C is an Arm(2; k ; n ) and we look at all spheres of radius d around code words, then we see each dierence at least twice.

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

10 / 20

Tools

Let L(x ) = x log2 (x ). From Stirling's theorem, for m suciently large, ; and bounded away from zero, small compared to m , but not necessarily constant 1 m

!

log2

m  L( )

m

L( )

With the binary entropy function H2 (x ) = 1 n

Blokhuis, Brouwer, Sali (TUE,Renyi)

log2

n

n

!

L( L(x )

): L(1

x ), we have

 H2( ):

Binary Armstrong codes

June 11. 2013

11 / 20

Tools II.

Let d =  n . Let 0 = 0 ( ) be such that a code of length n with constant weight d and minimum distance d has size at most 20 n . Let 1 = 1 ( ) be such that an arbitrary code with length n and minimum distance d has size at most 21 n .

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

12 / 20

Tools II.

Let d =  n . Let 0 = 0 ( ) be such that a code of length n with constant weight d and minimum distance d has size at most 20 n . Let 1 = 1 ( ) be such that an arbitrary code with length n and minimum distance d has size at most 21 n .  Proposition says that if an Arm(2; k ; n ) exists, then 2 nd  2(0 +1 )n . Hence H2 ( )  0 ( ) + 1 ( ).

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

12 / 20

The sphere packing bound

Gives an upper bound

Blokhuis, Brouwer, Sali (TUE,Renyi)

1 = 1

H2 (=2).

Binary Armstrong codes

June 11. 2013

13 / 20

The sphere packing bound

Gives an upper bound 1 = 1 H2 (=2). Let C be a code of word length n , constant weight d , and minimum distance d . Let m = bd =2c. Then

jC j 

n

!

m +1

=

d

!

m +1

;

because every (m + 1)-set of coordinates is covered by a code word from C at most once. So 0 = L( 12  ) L( ) L(1 12  ).

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

13 / 20

The sphere packing bound

Gives an upper bound 1 = 1 H2 (=2). Let C be a code of word length n , constant weight d , and minimum distance d . Let m = bd =2c. Then

jC j 

n

!

m +1

=

d

!

m +1

;

because every (m + 1)-set of coordinates is covered by a code word from C at most once. So 0 = L( 12  ) L( ) L(1 12  ). Solving H2 ( )  0 ( ) + 1 ( ) yields   0:2271, so that n  1:294k .

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

13 / 20

The Elias-Bassalygo bound

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

14 / 20

The Elias-Bassalygo bound

Gives 1 bound.

=

1

H2 ((1

Blokhuis, Brouwer, Sali (TUE,Renyi)

p

1

2 )=2), better than the sphere packing

Binary Armstrong codes

June 11. 2013

14 / 20

The Elias-Bassalygo bound

p

Gives 1 = 1 H2 ((1 1 2 )=2), better than the sphere packing bound. This time we nd   0:212, so that n  1:27k .

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

14 / 20

McEliece-Rodemich-Rumsey-Welch bound

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

15 / 20

McEliece-Rodemich-Rumsey-Welch bound

p

A weak form yields 1 = H2 ( 12  (1  )). This is better again (for  > 0:15), and yields   0:205, so that n  1:258k .

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

15 / 20

Levenshtein

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

16 / 20

Levenshtein

An improved value for 0 (see Levenshtein, V. I., Universal bounds for codes and designs, pp. 499648 in: Handbook of Coding Theory, V. S. Pless and W. C. Human, eds., Elsevier, Amsterdam, 1998. p. 643) is 0 B1

0 = H2 B @

2

v u u u1 t

Blokhuis, Brouwer, Sali (TUE,Renyi)

4

0s @

 (1  )

Binary Armstrong codes



2

(1



2

12

)

A

2

1 C C: A

June 11. 2013

16 / 20

Levenshtein

An improved value for 0 (see Levenshtein, V. I., Universal bounds for codes and designs, pp. 499648 in: Handbook of Coding Theory, V. S. Pless and W. C. Human, eds., Elsevier, Amsterdam, 1998. p. 643) is 0 B1

0 = H2 B @ Using it yields

2

v u u u1 t

4

0s @

 (1  )



2

(1



2

12

)

A

2

1 C C: A

  0:18506 and hence n  1:2271k .

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

16 / 20

McEliece-Rodemich-Rumsey-Welch bound, strong form

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

17 / 20

McEliece-Rodemich-Rumsey-Welch bound, strong form

1 = minf1 + g (u 2 ) where g (x ) = H2 ((1

p

Blokhuis, Brouwer, Sali (TUE,Renyi)

1

j u 1

g (u 2 + 2 u + 2 ) 0

2 g;

x )=2).

Binary Armstrong codes

June 11. 2013

17 / 20

McEliece-Rodemich-Rumsey-Welch bound, strong form

1 = minf1 + g (u 2 )

p

j u 1

g (u 2 + 2 u + 2 ) 0

where g (x ) = H2 ((1 1 x )=2). 1 With u = 0:25 this says 1 = 1 + g ( 16 )   0:183 and hence n  1:224k .

Blokhuis, Brouwer, Sali (TUE,Renyi)

2 g;

1 5 g ( 16 + 2 ). This yields

Binary Armstrong codes

June 11. 2013

17 / 20

Summary

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

18 / 20

Summary

Theorem

If an Armstrong code Arm(2; k ; n ) exists, then we have asymptotically n 1:224k .



Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

18 / 20

Summary

Theorem

If an Armstrong code Arm(2; k ; n ) exists, then we have asymptotically n 1:224k .



Corollary 1:12k for k

< f (2; k )  1:224k

> k0 .

Blokhuis, Brouwer, Sali (TUE,Renyi)

Binary Armstrong codes

June 11. 2013

18 / 20