Numerical Solution of Stochastic Differential ... - Semantic Scholar

Report 3 Downloads 157 Views
Numerical Solution of Stochastic Differential Equations with Jumps in Finance Eckhard Platen School of Finance and Economics and School of Mathematical Sciences University of Technology, Sydney Kloeden, P.E. & Pl, E.: Numerical Solutions of Stochastic Differential Equations Springer, Applications of Mathematics 23 (1992,1995,1999). Pl, E. & Heath, D.: A Benchmark Approach to Quantitative Finance, Springer Finance (2006). Bruti-Liberati, N. & Pl, E.: Numerical Solutions of Stochastic Differential Equations with Jumps Springer, Applications of Mathematics (2008).

Springer Finance

SF Springer Finance



springer.com

Dieser Farbausdruck/pdf-file kann nur annähernd das endgültige Druckergebnis wiedergeben !

� ������ ������

A Benchmark Approach to Quantitative Finance

15.5.06 designandproduction GmbH – Bender

ISBN 3-540-26212-1

1 A Benchmark Approach to Quantitative Finance

The first part of the book describes the necessary tools from probability theory, statistics, stochastic calculus and the theory of stochastic differential equations with jumps. The second part is devoted to financial modeling under the benchmark approach. Various quantitative methods for the fair pricing and hedging of derivatives are explained. The general framework is used to provide an understanding of the nature of stochastic volatility. The book is intended for a wide audience that includes quantitative analysts, postgraduate students and practitioners in finance, economics and insurance. It aims to be a self-contained, accessible but mathematically rigorous introduction to quantitative finance for readers that have a reasonable mathematical or quantitative background. Finally, the book should stimulate interest in the benchmark approach by describing some of its power and wide applicability.

Eckhard Platen David Heath

63575

The benchmark approach provides a general framework for financial market modeling, which extends beyond the standard risk neutral pricing theory. It allows for a unified treatment of portfolio optimization, derivative pricing, integrated risk management and insurance risk modeling. The existence of an equivalent risk neutral pricing measure is not required. Instead, it leads to pricing formulae with respect to the real world probability measure. This yields important modeling freedom which turns out to be necessary for the derivation of realistic, parsimonious market models.

Platen · Heath

E. Platen · D. Heath

1 23

Jump-Diffusion Multi-Factor Models Bj¨ork, Kabanov & Runggaldier (1997) • continuous time • Markovian • explicit transition densities in special cases • benchmark framework • discrete time approximations • suitable for simulation • Markov chain approximations

Eckhard Platen

Bressanone07

1

Pathwise Approximations: • scenario simulation of entire markets • testing statistical techniques on simulated trajectories • filtering hidden state variables Pl. & Runggaldier (2005, 2007) • hedge simulation • dynamic financial analysis • extreme value simulation • stress testing =⇒

higher order strong schemes predictor-corrector methods

Eckhard Platen

Bressanone07

2

Probability Approximations: • derivative prices • sensitivities • expected utilities • portfolio selection • risk measures • long term risk management =⇒

Monte Carlo simulation, higher order weak schemes, predictor-corrector variance reduction, Quasi Monte Carlo, or Markov chain approximations, lattice methods

Eckhard Platen

Bressanone07

3

Essential Requirements: • parsimonious models • respect no-arbitrage in discrete time approximation • numerically stable methods • efficient methods for high-dimensional models • higher order schemes, predictor-corrector

Eckhard Platen

Bressanone07

4

Continuous and Event Driven Risk • Wiener processes • counting processes

W k , k ∈ {1, 2, . . ., m} pk

intensity hk jump martingale q k dWtm+k

=

dqtk

=

dpkt

k ∈ {1, 2, . . . , d−m}



hkt

 k − 12 dt ht

W t = (Wt1 , . . . , Wtm , qt1 , . . . , qtd−m )⊤

Eckhard Platen

Bressanone07

5

Primary Security Accounts

j dStj = St−

ajt dt +

d X

k bj,k t dWt

k=1

!

Assumption 1 bj,k ≥− t k ∈ {m + 1, . . . , d}.

q

hk−m t

Assumption 2 d Generalized volatility matrix bt = [bj,k ] t j,k=1 invertible.

Eckhard Platen

Bressanone07

6

• market price of risk [at − rt 1] θ t = (θt1 , . . . , θtd )⊤ = b−1 t

• primary security account j dStj = St−

rt dt +

d X

k k bj,k t (θt dt + dWt )

k=1

!

• portfolio dStδ =

d X

δtj dStj

j=0

Eckhard Platen

Bressanone07

7

• fraction j πδ,t = δtj

Stj Stδ

• portfolio o n δ dStδ = St− rt dt + π ⊤ δ,t− bt (θ t dt + dW t )

Eckhard Platen

Bressanone07

8

Assumption 3 q

hk−m > θtk t

• generalized GOP volatility

ckt =

    

1−θtk

θtk

for k ∈ {1, 2, . . . , m}

θtk

for k ∈ {m + 1, . . . , d}

k−m − 1 (ht ) 2

• GOP fractions π δ∗ ,t =

Eckhard Platen

(πδ1∗ ,t , . . . , πδd∗ ,t )⊤

Bressanone07

=



c⊤ t

b−1 t

⊤ 9

• Growth Optimal Portfolio dStδ∗

=

δ∗ St−



rt dt +

c⊤ t

(θ t dt + dW t )



• optimal growth rate gtδ∗ = rt +



Eckhard Platen

m 1 X

2

(θtk )2

k=1

d X

k=m+1

hk−m t





ln 1 + q

Bressanone07

θtk hk−m − θtk t



+ q

θtk hk−m t

 

10

• benchmarked portfolio ˆδ S t

Theorem 4

=

Stδ Stδ∗

ˆδ is an Any nonnegative benchmarked portfolio S

(A, P )-supermartingale. =⇒

no strong arbitrage

but there may exist: free lunch with vanishing risk free snacks or cheap thrills Eckhard Platen

(Delbaen & Schachermayer (2006)) (Loewenstein & Willard (2000)) Bressanone07

11

Multi-Factor Model model mainly: • benchmarked primary security accounts ˆtj = S

Stj Stδ∗

j ∈ {0, 1, . . . , d} supermartingales, often SDE driftless, local martingales, sometimes martingales

Eckhard Platen

Bressanone07

12

savings account St0 = exp =⇒

GOP Stδ∗

=⇒

Z

t

rs ds

0



St0 = 0 ˆt S

stock ˆtj S δ∗ Stj = S t

additionally dividend rates foreign interest rates

Eckhard Platen

Bressanone07

13

Example Black-Scholes Type Market

ˆtj = −S ˆj dS t−

d X

σtj,k dWtk

k=1

hjt , σtj,k , rt

Eckhard Platen

Bressanone07

14

Examples • Merton jump-diffusion model dXt = Xt− (µ dt + σ dWt + dpt ) , ⇓ 2 (µ− 1 2 σ )t+σWt

Xt = X0 e

Nt Y

ξi

i=1

• Bates model 

p

Vt dWtS + dpt p dVt = ξ(η − Vt ) dt + θ Vt dWtV dSt = St− α dt +

Eckhard Platen

Bressanone07



15

3

2.5

2

1.5

1

0.5

0 0

5

10 time

15

20

Figure 1: Simulated benchmarked primary security accounts. Eckhard Platen

Bressanone07

16

10 9 8 7 6 5 4 3 2 1 0 0

5

10 time

15

20

Figure 2: Simulated primary security accounts. Eckhard Platen

Bressanone07

17

4.5 GOP EWI 4

3.5

3

2.5

2

1.5

1

0.5 0

5

10 time

15

20

Figure 3: Simulated GOP and EWI for d = 50. Eckhard Platen

Bressanone07

18

4.5 GOP index 4

3.5

3

2.5

2

1.5

1

0.5 0

5

10 time

15

20

Figure 4: Simulated accumulation index and GOP. Eckhard Platen

Bressanone07

19

Diversification • diversified portfolios j πδ,t ≤

Eckhard Platen

K2 1

d 2 +K1

Bressanone07

20

Theorem 5 In a regular market any diversified portfolio is an approximate GOP.

Pl. (2005)

• robust characterization • similar to Central Limit Theorem • model independent

Eckhard Platen

Bressanone07

21

60

50

40

30

20

10

0 0

5

9

14

18

23

27

32

Figure 5: Benchmarked primary security accounts.

Eckhard Platen

Bressanone07

22

450

400

350

300

250

200

150

100

50

0 0

5

9

14

18

23

27

32

Figure 6: Primary security accounts under the MMM.

Eckhard Platen

Bressanone07

23

100 EWI GOP

90

80

70

60

50

40

30

20

10

0 0

5

9

14

18

23

27

32

Figure 7: GOP and EWI.

Eckhard Platen

Bressanone07

24

100

Market index GOP

90

80

70

60

50

40

30

20

10

0 0

5

9

14

18

23

27

32

Figure 8: GOP and market index.

Eckhard Platen

Bressanone07

25

• fair security benchmarked security (A, P )-martingale

⇐⇒

fair

• minimal replicating portfolio fair nonnegative portfolio S δ with Sτδ = Hτ =⇒

minimal nonnegative replicating portfolio

• fair pricing formula VHτ (t) = Stδ∗ E



 Hτ At δ ∗ Sτ

No need for equivalent risk neutral probability measure! Eckhard Platen

Bressanone07

26

Fair Hedging • fair portfolio

Stδ

• benchmarked fair portfolio ˆδ = E S t



 Hτ At δ ∗ S τ

• martingale representation   d Z τ X Hτ Hτ k k + (s) dW = E x A t Hτ s + MHτ (t) δ δ ∗ ∗ Sτ Sτ k=1 t MHτ -(A, P )-martingale E

(pooled)



M Hτ , W

k

 t

=0

F¨ollmer & Schweizer (1991) No need for equivalent risk neutral probability measure! Eckhard Platen

Bressanone07

27

Simulation of SDEs with Jumps • strong schemes (paths) Taylor explicit derivative-free implicit balanced implicit predictor-corrector • weak schemes (probabilities) Taylor simplified explicit derivative-free implicit, predictor-corrector Eckhard Platen

Bressanone07

28

• intensity of jump process – regular schemes

=⇒

– jump-adapted schemes

Eckhard Platen

high intensity =⇒

low intensity

Bressanone07

29

SDE with Jumps

dXt = a(t, Xt)dt + b(t, Xt)dWt + c(t−, Xt−) dpt X0 ∈ ℜd • pt = Nt : Poisson process, intensity λ < ∞ PNt • pt = i=1 (ξi − 1): compound Poisson, ξi i.i.d r.v. • Poisson random measure Z c(t−, Xt− , v) pφ (dv × dt) E

• {(τi , ξi ), i = 1, 2, . . . , NT } Eckhard Platen

Bressanone07

30

Numerical Schemes • time discretization tn = n∆ • discrete time approximation

∆ Yn+1 = Yn∆ + a(Yn∆ )∆ + b(Yn∆ )∆Wn + c(Yn∆ )∆pn

Eckhard Platen

Bressanone07

31

Strong Convergence • Applications: scenario analysis, filtering and hedge simulation • strong order γ if εs (∆) =

Eckhard Platen

r

  2 E XT − YN∆ ≤ K ∆γ

Bressanone07

32

Weak Convergence • Applications: derivative pricing, utilities, risk measures • weak order β if εw (∆) = |E(g(XT )) − E(g(YN∆ ))| ≤ K∆β

Eckhard Platen

Bressanone07

33

Literature on Strong Schemes with Jumps • Pl (1982), Mikulevicius & Pl (1988) =⇒

γ ∈ {0.5, 1, . . .} Taylor schemes and jump-adapted

• Jacod & Protter (1998) • Gardo`n (2004)

=⇒

strong schemes γ ≤ 1.5

=⇒

• Maghsoodi (1996, 1998)

=⇒

Euler scheme for semimartingales

γ ∈ {0.5, 1, . . .} strong schemes

• Higham & Kloeden (2005)

=⇒

implicit Euler scheme

• Bruti-Liberati & Pl (2005) =⇒ γ ∈ {0.5, 1, . . .} explicit, implicit, derivative-free, predictor-corrector

Eckhard Platen

Bressanone07

34

Euler Scheme • Euler scheme Yn+1 = Yn + a(Yn )∆ + b(Yn )∆Wn + c(Yn )∆pn where ∆Wn ∼ N (0, ∆)

and

∆pn = Ntn+1 −Ntn ∼ P oiss(λ ∆)

• γ = 0.5

Eckhard Platen

Bressanone07

35

Strong Taylor Scheme Wagner-Platen expansion

=⇒

Yn+1 = Yn + a(Yn )∆ + b(Yn )∆Wn + c(Yn )∆pn + b(Yn )b′ (Yn ) I(1,1) + b(Yn ) c′ (Yn ) I(1,−1) + {b(Yn + c(Yn )) − b(Yn )} I(−1,1) + {c (Yn + c(Yn )) − c(Yn )} I(−1,−1)

with I(1,1) = I(1,−1) =

2 1 {(∆W ) n 2

PN (t n+1 )

i=N (t n )+1

− ∆},

Wτ i − ∆pn Wt n ,

• simulation jump times τi :

Wτi =⇒

I(−1,−1) =

1 {(∆pn )2 − ∆pn } 2

I(−1,1) = ∆pn ∆Wn − I(1,−1)

I(1,−1) and I(−1,1)

• Computational effort heavily dependent on intensity λ Eckhard Platen

Bressanone07

36

Derivative-Free Strong Schemes avoid computation of derivatives ⇓

order 1.0 derivative-free strong scheme

Eckhard Platen

Bressanone07

37

Implicit Strong Schemes wide stability regions ⇓

implicit Euler scheme order 1.0 implicit strong Taylor scheme

Eckhard Platen

Bressanone07

38

Predictor-Corrector Euler Scheme • corrector Yn+1



 = Yn + θ a ¯η (Y¯n+1 ) + (1 − θ) a ¯η (Yn ) ∆n 



+ η b(Y¯n+1 ) + (1 − η) b(Yn ) ∆Wn +

p(tn+1 )

X

c (ξi )

i=p(tn )+1

a ¯η = a − η b b′ • predictor p(tn+1 )

Y¯n+1 = Yn + a(Yn ) ∆n + b(Yn ) ∆Wn +

X

c (ξi )

i=p(tn )+1

θ, η ∈ [0, 1] degree of implicitness Eckhard Platen

Bressanone07

39

Jump-Adapted Time Discretization

regular t0

t0

Eckhard Platen

t1

t1

t2 r τ1

r τ2

r t2

r t3

t3 = T

jump times

jump-adapted t4

t5 = T

Bressanone07

40

Jump-Adapted Strong Approximations jump-adapted time discretisation ⇓ jump times included in time discretisation • jump-adapted Euler scheme Ytn+1 − = Ytn + a(Ytn )∆tn + b(Ytn )∆Wtn and Ytn+1 = Ytn+1 − + c(Ytn+1 − ) ∆pn

• γ = 0.5 Eckhard Platen

Bressanone07

41

Merton SDE : µ = 0.05, σ = 0.2, ψ = −0.2, λ = 10, X0 = 1, T = 1 1

0.8

X

0.6

0.4

0.2

0 0

0.2

0.4

0.6

0.8

1

T

Figure 9: Plot of a jump-diffusion path. Eckhard Platen

Bressanone07

42

0.0005

0.00025

Error

0

-0.00025

-0.0005

-0.00075

-0.001

-0.00125 0

0.2

0.4

0.6

0.8

1

T

Figure 10: Plot of the strong error for Euler(red) and 1.0 Taylor(blue) scheme. Eckhard Platen

Bressanone07

43

Merton SDE : µ = −0.05, σ = 0.1, λ = 1, X0 = 1, T = 0.5

Log2 Error

-10

-15

-20 Euler EulerJA 1Taylor -25

1TaylorJA 15TaylorJA

-10

-8

-6

-4

-2

0

Log2 dt

Figure 11: Log-log plot of strong error versus time step size.

Eckhard Platen

Bressanone07

44

Literature on Weak Schemes with Jumps • Mikulevicius & Pl (1991) =⇒ jump-adapted order β ∈ {1, 2 . . .} weak schemes • Liu & Li (2000) =⇒ order β ∈ {1, 2 . . .} weak Taylor, extrapolation and simplified schemes • Kubilius & Pl (2002) and Glasserman & Merener (2003) =⇒ jump-adapted Euler with weaker assumptions on coefficients • Bruti-Liberati & Pl (?) =⇒ jump-adapted order β ∈ {1, 2 . . .} derivative-free, implicit and predictor-corrector schemes

Eckhard Platen

Bressanone07

45

Simplified Euler Scheme • Euler scheme

=⇒

β=1

• simplified Euler scheme ˆ n + c(Yn ) (ξˆn − 1)∆pˆn Yn+1 = Yn + a(Yn )∆ + b(Yn )∆W

ˆ n and ∆pˆn match the first 3 moments of ∆Wn and ∆pn up to • if ∆W an O(∆2 ) error =⇒ β = 1





˜ n = ± ∆) = P (∆W Eckhard Platen

Bressanone07

1 2 46

Jump-Adapted Taylor Approximations • jump-adapted Euler scheme

=⇒

β=1

• jump-adapted order 2 weak Taylor scheme b b′ 

2



Ytn+1 − = Ytn + a∆tn + b∆Wtn + (∆Wtn ) − ∆tn + a′ b ∆Ztn    2 1 1 ′′ 2 1 ′′ 2 ′ 2 ′ a a + a b ∆tn + a b + b b {∆Wtn ∆tn − ∆Ztn } + 2 2 2 and Ytn+1 = Ytn+1 − + c(Ytn+1 − ) ∆pn

• β=2 Eckhard Platen

Bressanone07

47

Predictor-Corrector Schemes • predictor-corrector

=⇒

stability and efficiency

• jump-adapted predictor-corrector Euler scheme o 1n a(Y¯tn+1 − ) + a ∆tn + b∆Wtn Ytn+1 − = Ytn + 2 with predictor Y¯tn+1 − = Ytn + a∆tn + b∆Wtn

• β=1

Eckhard Platen

Bressanone07

48

3 EulerJA

ImplEulerJA

2

Log2 Error

PredCorrJA 1

0

-1

-2

-5

-4

-3

-2

-1

Log2 dt

Figure 12: Log-log plot of weak error versus time step size. Eckhard Platen

Bressanone07

49

Regular Approximations • higher order schemes : time, Wiener and Poisson multiple integrals • random jump size difficult to handle • higher order schemes: computational effort dependent on intensity

Eckhard Platen

Bressanone07

50

Conclusions • low intensity • high intensity

=⇒ =⇒

jump-adapted higher order predictor-corrector

regular schemes

• distinction between strong and weak predictor-corrector schemes

Eckhard Platen

Bressanone07

51

References Bj¨ork, T., Y. Kabanov, & W. Runggaldier (1997). Bond market structure in the presence of marked point processes. Math. Finance 7, 211–239. Bruti-Liberati, N. & E. Platen (2005). On the strong approximation of jump-diffusion processes. Technical report, University of Technology, Sydney. QFRC Research Paper 157. Delbaen, F. & W. Schachermayer (2006). The Mathematics of Arbitrage. Springer Finance. Springer. F¨ollmer, H. & M. Schweizer (1991). Hedging of contingent claims under incomplete information. In M. H. A. Davis and R. J. Elliott (Eds.), Applied Stochastic Analysis, Volume 5 of Stochastics Monogr., pp. 389–414. Gordon and Breach, London/New York. Gardo`n, A. (2004). The order of approximations for solutions of Itˆo-type stochastic differential equations with jumps. Stochastic Analysis and Applications 22(3), 679–699. Glasserman, P. & N. Merener (2003). Numerical solution of jump-diffusion LIBOR market models. Finance Stoch. 7(1), 1–27. Higham, D. & P. Kloeden (2005). Numerical methods for nonlinear stochastic differential equations with jumps. Numer. Math. 110(1), 101–119. Jacod, J. & P. Protter (1998). Asymptotic error distribution for the Euler method for stochastic differential equations. Ann. Probab. 26(1), 267–307. Kubilius, K. & E. Platen (2002). Rate of weak convergence of the Euler approximation for diffusion processes with jumps. Monte Carlo Methods Appl. 8(1), 83–96. Liu, X. Q. & C. W. Li (2000). Weak approximation and extrapolations of stochastic differential equations

Eckhard Platen

Bressanone07

52

with jumps. SIAM J. Numer. Anal. 37(6), 1747–1767. Loewenstein, M. & G. A. Willard (2000). Local martingales, arbitrage, and viability: Free snacks and cheap thrills. Econometric Theory 16(1), 135–161. Maghsoodi, Y. (1996). Mean-square efficient numerical solution of jump-diffusion stochastic differential equations. SANKHYA A 58(1), 25–47. Maghsoodi, Y. (1998). Exact solutions and doubly efficient approximations of jump-diffusion Itˆo equations. Stochastic Anal. Appl. 16(6), 1049–1072. Mikulevicius, R. & E. Platen (1988). Time discrete Taylor approximations for Ito processes with jump component. Math. Nachr. 138, 93–104. Mikulevicius, R. & E. Platen (1991). Rate of convergence of the Euler approximation for diffusion processes. Math. Nachr. 151, 233–239. Platen, E. (1982). An approximation method for a class of Itˆo processes with jump component. Liet. Mat. Rink. 22(2), 124–136. Platen, E. (2005). Diversified portfolios with jumps in a benchmark framework. Asia-Pacific Financial Markets 11(1), 1–22. Platen, E. & W. J. Runggaldier (2005). A benchmark approach to filtering in finance. Asia-Pacific Financial Markets 11(1), 79–105. Platen, E. & W. J. Runggaldier (2007). A benchmark approach to portfolio optimization under partial information. Technical report, University of Technology, Sydney. QFRC Research Paper 191.

Eckhard Platen

Bressanone07

53