On Rent’s rule for rectangular regions J. Dambre, P. Verplaetse, D. Stroobandt and J. Van Campenhout Ghent University, ELIS Department
Gent,
Belgium "! #%$%#&
'(& & ) E-mail:
ABSTRACT
*
$%+
$-,.
%$ /( 01 # $%2 #3
4 5+/67 8
9$/;:= $%+/0$%@?/+,./2BAC #/DE F
'% &FGB+/ #/D $%+/H9+ #%I: ;J2AC #/DE F
'% K$%/ML=NO+/P QD'H=
K+ R$9+/H:#JD+'&-¡ik$% $%/(\
+]0 #_ +R 0$%_
+ % #¢2$/;J ) #%+/(@ +P,I+P(
+'#&9£K/ (
+'y$% H #6+/jP# #9 / 9+ wo
$% @T>
+¤ 0 "$%/D
$%/$%lH $; $%+/$%/(7
+) 8 $ 3+T U#$;
#'$;Px z.||8} i#JD+'_ +C$; $%/D
$%/$%2AC /3 k)+/ /& * /y #%' $%+/+Tc+' "9+ #i,.$% 0 J/D 0 8 $3/H2$%/H'
$o ) #/]02=
?4#$;
#'$% .$%c) Tb+
9 7$/ / SD-Tq+%+,B J1@'92 J5+Tc 0 92$%/6
#'; "/H p # $%+ +9 \$%/H$%= $%+/cTb+ RTq' '
K,I+
?P$%/ p # $%+/M¥& 2.
Y/@(DEFINITIONS #/ ]¦ 0 K #9$;
$%XTq+
'>
w{ f %+l?/+=,./4ZAC #/DE _
'% eH/ #ZK
# $%+/9 ) 8[,I #/ 0 .D: 8 ]( "/' ) 8 C+TF 8
9$/%
QD'$;
@ +2#+// \9)+ $%+/ +T_ #$;
#'$;c,.$; 02 0 .
#c+T 0H=c#$;
#'$;I Tb'/8 $+/P+Ta 0 /' ) +T.( 9 $/1 0H")+ $%+/&5¡ZQD'H $%+/{M$%]0H ]: 8
$² U J2,I+2H= ]9
#I/U k)+/ #/D ¦( #/ ]%;JU% # AR #/DZ k)+/ #/D8-/H3#+/]/D 0i,I c,.$%%
Tq 8 F + Z 0 .8" v=qfuw8¦&V`-$%('
ULM0+,.9U[J$%c k9 2+TC 0 8
9$/;:#J: +'.$%I 0 C/' ) 8 B+T-/ 8 c+T-% #/( 0 K$%/2 0H=cJ+'BTq+ R 80 )+$% % .' I+T &_`+ Z0+9+( / #+'_#$;
#'$% #$w& &_$%
#(= ]: $%/(M$%
' $%+/\' y DJM 0 #$;
#'$; )+'/H JDX 0 "#$;
#'$; #JD+'4#/$%/$% %TC ) 7 # #/V5'
#($%+/+TK/$%/e/$; #;J =
( 0+9+( #/ #+'C#JD+'&.mI0 8
Tq+
X 0 \/+
2%$%²# @,.$;
: % #/( 0U$%
$ ' $%+/ [ #B$%R($% #/@ DJ
y # y ,.0
,.
%$ C,.$; 0 4
#
# #/DR k
/Ha$%/RTb+
´ | 0 \#$;
#'$;& y I/U ) \#+/$
UR 0 \
+ H $%$;JPTb+ K
]/H+9;J7 #% # @/ R+T- 0 3#JD+'R +0H 3% #/( 0 x L=}w& mI0 2$% P /$;[J6Tq'/ $%+/ M # +Tlw@
#($%+/+T]lU#JD+' 9 #$%' $%C 0 /' ) R+TF%$@[,B+: P DJ9 0 K +]/'" ) c+T_(= \)+$; $%+/R= 0 c 9 R$%]/# ,.0$]09$%F($% #/9 DJz & * ($%/ 0$Z$%I$
8: (= ]$%/(l$
' $%+/ZT>
+ 0 c )+'/H J+T) 0 .#$;
#'$;B#JD+'& hj K/M/+, #%#'= y / )+* ;@2
A-
C
Y /U MODEL 0$%3 # $%+/XDERIVATION ,I l,.$%Z 8
$ 9 0 #+
$%i9+ #aTq+ #: $%2= $/(j 0 1 ]( 1/' ) 2+Tl 8
9$/% .
QD'$;
f + +// #37'
#($+/5+TB7#$;
#'$;3#JD+'K,.$; 0U 0
#3+TF 0
%$'$;& hy B,.$%%'9 F 0 I#JD+'i9 $%' +K ) F[,I+:$%9 #/$%+/H¦ ,.$; 0)+$% P(= @)+$; $%+/9 ]/( °##+ ]$%/(U +6/$%+:
+$%K2/0]/9(
$o/2 2/0]/4,.$;
#% #/( 079
$%& mI0 6,.$ 0©³ /H0 #$%(0D@´ +Tj
#8]/(' @'
#($%+/ +T 9#JD+'C
"%+2 k
# M$%/U2/0H=]/M'/$; # 0'R+
: )+/H$/(K +C 0 I/'" ) -+T)(= #iH// l DJ\ 0 B
#8]/(% c$/ )+ 04
%$ $%+/#&_`-$/%;JD,B B,.$%'9 B 0H=- 0 B#$;
#'$;i#+/: ]$%/2+/%J,I+:= 3 0 C/' )
+T.$%/ 8
/HZ
9$%/H y Tb+ " ]0j(= P$%/y 0 4
#($%+/ ub8t])rHr8 &%
"!
"!
,.-
"!(' )+*
[ S y f w ,.0
3$Z 0 .
+ H $%%$%J4 0H=I3
9$%/+// # +9( l$R$%/D
/H +4 0 \
#($%+/&Bhj /PTq' 0 K ##+4: )+ l¡FQD'H= $%+/:S".Tq+%%+,.# #$!(' ) *
0/ ) * 213
/ )+* 213 4.-
y
"!(' ) *
Zw
(57698 : / ) * ;
´
w¥
+ +'
$%9 P9 #0 k9 &Y[/ # Xi 0 M$;WX
#/ P ) ,I # /V 0 '
#lTq+ %} ¦ QD'
2
#($%+/]4/ } N /°0 ]%Jj ) $% $/('$0 o+" 0 K' K+T-"$%/(% 4%r¬vi.8c8svX8 Tb+ K/DJ6q
#]/(' 8B
#($%+/U$_[' $;eH X& mI0 B2$/ #+/#%'$+/l +R ) Z2 iTb
+ 0 F
#'% a$/l`-$%('
z$. 0H=cTq+ 3L=Nn#$;
#'$;R#JD+'
¸ S | |L mI0$%F
#
$% $%+/7+/4 0 .>#JD+'FAC /Z k)+/ #/Di,cI%+ Tq+'/H DJM` #' 8 3$%/j| L6x S}#JD+'.9 $%'M& G
4.2 Results for }
Y[/°`-$%('
SI 0 M # $%2 %' #2+T }
M0+,./©2 Tq'/ $%+/U+T µ Tq+ K+9 %' #R+T y ¸ S& * /+ 0 K$% ,O+/ 0 .
'; F$%Z($% #/$/2`-$%('
R¥,.0$%8040+,.F 0 c $2= %' #.+T } R"Tq'/ $%+/M+T y Tq+ K ]o%' #.+T µ & YKTq+%%+,."T>
+ 0 4
#$%+' $%#'$+/y+/1 0 ) #0H$%+'
+T 0H=ITq+ 7'g9#$% #/D ;JV%+=, %' 7+T %y c9+9 k
/H
9$%/H% ) #%+/(U +6) 8
$9 8 4( ##&ymI0
8Tq+
yw¡FQD'H= $%+/ |{
/(% 9$ 9³ 0 4/'" ) 3+Tc(= # $/6 0$%\)
$%9 \
($%+/ $%4 $%%.
+k$%2= #;Jj
+)+ $%+/I +y NQP R &mI0 7Tq 0H 9+
9( #
2$%/+% y##+'/D Tq+ " 0 9$%/8
$%/(6%' # +T &\Y/1`-$%('
4¥X 0$%K$%K
# 5$%/U 0 l/ =
%J5%$%/ # /H H= ]%% #Z$/
+TI%i#'
#CTb+ %+, ' #3+T y & ± ' +TR 0 P$%9H84+TR 0 2
#]/( @)
$%9 Z0$%(0 9%' 4+T µ ¦$¦& &o
( )
$%9
]R%+2
#';\$%/50$%(0 3% # #%3+TZ 0 } : s8t]uq988t@t wuwvfw`-$%('
8& * "%+/(1" 0 2,.$> 0+TR 0$%
($%+/9$%i'g9$ / ;Jl2%$%/4
+)+ $%+/" +C 0 B2%% #i
#: M
K>
% " B K*? !" $#%!)#'k =V 3!0 K 6;#%$#%!/ H K 5+! !#" L )CED7F X'[#?0#KA l0 B#'#,¢Tb+
+TBAR #/DE C
' 0H=3/1 ) l # #/6$%/6`-$(: '
P{& p $%/# 2 0$%4 8WX #
>= # +6³ $%/ V+T\ µ ³ · $; 8k /H3 +U0$%(0 8 "%' # +TK µ $%/
##&5`+ l2% #$;
#'$% B+ I=
( K%' #B+T µ D 0$%B WX I2#J4 ) #+9 .+"+4: $%/H/ 0H=l¡FQD'H= $%+/{@/+M%+/( e \ 0
# $%+/0$%+T >
(L ({ (z (,S (¥ ( ( ( A>
z& z& z& z& z& z& z& z&
z& {¥ z&%|| {& z {& { {& L {& ¥z {& S.S {& L{ >
& LL & { & z|| & S|#z & ¥|{ & | & | & L¥ A>
>
¥& ¥& ¥& S& S& S& { S& S&
& { & ¥ & | D& { SD& L z& SD& ¥{ z& , S > >
>
>
& {{ & {zDL & zLL & SD| & .¥ S{ & ¥{ & & |#z
Experimental results for pc as a function of pi 1
Layout Rent exponent
W K980 jV2!" 3(9; K!8d@ 3 ,4#' #$%!0!/5 Q!/ '[#* 5 9; K!8d L £C
$%($%/H m ]/Tb+
9 39 w z y z y w z y zy (| z& z& {,S &%|A> ¥& & {A> & L$>
0.8
0.6
0.4
> >
W K980 UTV n^Q!/5/ 0;9; !//*d?K. 3 .GC K' 3 Q!/ '[#*$#%!;F L 39 $%²# w %z y $ 2A> zhS ¥{ S & S & ¥,=S z $ 2 S |#LL S & & >L $ 2 S {||# ¥& A> & S $ M| S |¥||.S ¥& S.S & ¥|#¥ $ M|¥ |L ¥& z{ & ¥,$S > $ M|2> |z.>.S L >& L.S & ¥z,S
'Z"&_Y/Px;|#D =}w p
+D+ H/Hi$ #/D $%e lC$%9$%>= Z WX #_Tb+
0 B$%/D
$%/$%IAR #/D_H= ]9
#& S +,I 0 I #$ $%+/o$ /: $;e y DJy+' "9+ #¦_$%l$%/0 8
#/Dl +P 0 2J+'l$%/D
#+// ) 0H$+' 2/Hj 0'l
+ H ;J#+9% #9 #/D] J1 +6 0 P WX $ #/D $%e P$%/jx;|#) =}w&
0.2
Theoretical curve (with theoretical wirelength distribution) Theoretical curve (with empirical wirelength distribution) Experimental results
0 0
0.2
0.4
0.6
0.8 Intrinsic Rent exponent
1
% aV
X=VY 3r* !" 0\l% 3$s;.K#%! #'` K0$#! 9; 3 Aj 3 K!@ U3l% 3 ]l0 ]#' !/5 y '[#`00;9; K!*KdV L W` # 3.0O. l% K]' #:#%*#V5 0nA1$) 3# 3.0 [,I
H
H # #P$%/M' )+ $%2),.$;
#% #/( 05$%
$% ' $%+/#& mI0 " k)
$%9 #/D]-
#'; /HU 0 l 0 #+
$%%;J6
$%
W K980 i" 7^ !/5// 0O9; K!8d K0. 7 3=V; r K!VQ0 H *#V5 0\A1 f # 3.0jA1 0 !f5/ 9/#%! CEKFO!/56*#V5 08A1 8.0>A1 0 ! 65/ 98 #%! CZ@TF L p1 /0 >
>
L 7 & S.S & { ||&%|# |=L&%|#{ ||& S{ |{& LD|
>
z} |& L & L |& z{ |=L& {| |=L& z |{&
>
A>
">
& ¥ & {z & ,¥ S & ¥ S & ¥ & ¥ | >
A>
µ6 S M| & SL & ¥| & |& z & { ||& {{ >
& L¥ & .S & ¥ | & { & L{ & |#¥ >
> $> > > >
y #
O
O
·
POHQR
L L S
S
| S
|¥ mI0$%R #9$;
$%o,.$;
#% #/( 0U$
$% ' $%+/M$%R%+90+=,./U$%/@`-$(: '
\|#&Z¡i #/ 0+'(04$;B0Z/+3 0 #+
$%H H8?(
+'/,.0H=: +D # 8 R,B 50H M' f$;P +y$%%' ]= 6 0 U$%9H82+T $%/#+ : )+ ]= $%/(9# #9 #/DRQD'H$;JP$%/@ 0
+k$2= 7,.$;
#% #/( 0 $%
$% ' $%+/&ImI0 #+
$%a' #.Tq+ # $%2 P'$%/( 0$% #9
%$$%C,.$;
#% #/( 0 $%
$% ' $+/.0+=, /©%9+P) Tq #8 2 ]0P,.$; 0M+' . k)
$%9 #/D]]@w`-$%('
8&
5.3 Impact of suboptimal layout software
tc as a function of the intrinsic Rent exponent tc
3.5 c=8 3
Experimental and approximated wirelength distributions
2.5
1
Normalized wirelength distribution
L 7 |& |& .S |=LD& L |{& . S |{& { |#z& {
%' #3Tq+ \ 0 l$ 1 ) /]02
?K
4'92
$%²# U$%/yma % { Tb+ R
#]/(% #c,.$; 0U) #. ] $%+ | /H7SD&ihj Ke/H9 0 3 9
/HR.Tb+ . 0 \J/D 0 8 $K ) #/]02=
?#&
Increasing c
Experimental wirelength distribution Theoretical approximation of N'(l) Empirical approximation of N'(l)
0.1
,.$;
#% #/( 0#c 0
@$%71$%(/$;eH/7$;WX
#/ M ) [,B # #/° )+ 0 #'
#CTb+ \0+ K$/D
+// # $%+/#X2?$%/(9 0 k)
$%9 #/D] ]( C,.$;
#% #/( 0I$%(/$;e/D ;J90$%(0 F 0H/9 0 . 0 #+
8 $# +/ ##&mI0$%9$%
#/J ) ,I # #/ )+ 0,.$;
#% #/( 0°$%
$% ': $%+/4$%4
#)+/$ % PTq+ 9 0 P$;WX
#/# #9 ) ,I # / 0 #+
8 $#
#'% #
$% 4Tb
+ +' I9+ #¦/9 k)
$%9 #/D]H]&iY[/: oX0$(0 3 ]( ",.$;
#% #/( 0C
#';3$%/690$%(0 \/'" )
+TF k
/a
9$%/%3/H@ 0'R0$%(0 \%' K+T z } &3`+ K+'
) #/802
?#D$;. # #9B 0I 0 C,.$;
#% #/( 0M$%
$ ' $%+/c
+: '# 6 J Za# 99+
"+ l% # 0H 0 Tq+%+,.$%/(¦ #9$;
$%: ;J@ 8
9$/ HB ) 0H$+'
2 c=1
Curves for benchmark g8 1.5
0.01
1
0.001
0
0.2
0.4
0.6
0.8
1
Intrinsic Rent exponent
% ( {#V5 0% /0' #R } = $%+/0$%1Tq+ J+'K
#($%+/\+TI/DJU($% /10) &"mI0 l
: '; FTb
+ +' B9+ #/9 ) R
+k$%2 4 DJ"AC #/DE i
'% R +
$% 3 0 ¦ # $%2 B>#JD+'RAR #/DcH= ]9
#& £K'
#'; 0+,^ 0H 0
9 k$% PTb'/9 /]Z$;WX : /# \ ) ,I # / /H y $%/0
#/Dc + 0 3 # ) #$%/("+Ti#$; : '$; $%/y@LN¯#JD+'\9 $'M&lmI0 4#JD+'\AR #/D\ k)+/ #/D3$% ;,c#J\(
= \ 0H/1& S6w2#+/#%'$%+/6 0HC,c %+PTb+
': = "$%/2x S=}b-/l$; -%' F$%-
( %Jl$%/H #) #/ #/D-+T 0 B) #
]= $%+l+T) 0 I
#8]/(' F
#($%+/#&F£K/ 0 c+ 0 8 B0/HX 0 c>#J: +' AR #/D\#+D g4#$% #/D $/
#l,.$; 01$/
$/(M%' #\+TB 0 ) #\ ]= $+& hj 0 lTb+
"' 6/6 k/H $%+/6Tb+ \ 0
/H#/7 0 J2,I
\#+/e
9 P DJ2 k)
$%9 #/D])
#'; #& m+92? \+' R
#'; K9+
$;
# ;JM%$# % X$;C$%K/ # #: = JP +"J #2 $%;JP 'HJ7 0 3$%9Hc+T_ 0 3#JD+'. ]: (J@/H2 0 3
#'; $/(4#JD+'KQD'%$;[J7+/@ 0 3#JD+'.AC #/D.:
]9
#&-hy c%+\>/ +3 k #/l 0 I#'
/i9+ #D +K 0
$%9 #/$%+/R/H2 +4#$;
#'$% c,.$; 0M"'; $;:$%/P#+// # $%+/#&
6.
x;|8}"GC&& * %) &mI0 \Y p iN\ "#$;
#'$;R ) #/]02=
?9'$; &Y[/ tv Zv«3b¨ 1u]w ¬Ksiv ¨¬
uw rl8
]u% H( #R,SD& * G ~ i
## *
$i| & x L} _&HGB0
$% $% /@N& p
+D+ H/H&mI0 \$%/D
] $%+/M/H %$# $%+/U+T_AC /E I
' V& utr
iv u
¬
]8"
s u¦r" u]
v ¬
8< x!- v u]8t v) t "uw¦uwvHN3 # # ) CL& * ## # 7Tb+ C' %$% $%+/o& x {=#} & * &N3=$%# "& 4&NK H/H$ &N"& ~ #$%/¦& * +D80 $% ,.
%$ 8:% #/( 0U$%
$ ' $%+/7Tq+ C($%(#% $/D #( ] $%+/y& % p Y * AZmY8N3
$% $%+/M/H7%$> $%+/oV & u'tr(
Zv .¦tv) l vuw]8
]hz Sw{8 S S ~ =
801| & x z}\h¢&H¡c&N3+/ 0& i# #9 /C/H@ 8 ]( \$%/D
#+// # $%+/ /( 0.+T_#+9' .%+($%"& utr(
+*_uqtuq¦
,
¬
]- %XG * p L¥ L L L DZ|# & x S} ~ &H` ' &HGB+// # $%$;[J7+T_ ]/H+ %+($V& utr
v. *ZvKsH- HG {| L {{i| L& x ¥=}lZ& S ( #/ * & ± & 0/(`B/& & \' ]0$¦/H GC&AC280/H ]/o&H£K/7 0 3$%/D
$%/$%\AR #/D.H ]9
/H7) # ]=: PH $; $%+/$%/(99 0++%+($% ##&Vu tr(
Zv. *ZvCsH- $x10R2u "D3 "4l8(
/u]wtr3 "5*_ubtuq¦
,
¬
]- %a|{|=8 L { 6 /' J5| z& x } %"& = J$%C/H "& \'2 &¨ y8¦uq(
780:9K¬8s8t¦tr8s¨ rt]¦uq¦uwvuqD r