On Rent's rule for rectangular regions - CiteSeerX

Report 0 Downloads 15 Views
On Rent’s rule for rectangular regions J. Dambre, P. Verplaetse, D. Stroobandt and J. Van Campenhout Ghent University, ELIS Department 

Gent,  

Belgium    "! #%$%#&

'(& & ) E-mail:

ABSTRACT

* 

$%+

$-,.

%$  /( 01 # $%2 #3

4  5+/67 8

9$/;:= $%+/0$%@?/+,./2BAC #/DE F

'% &FGB+/ #/D $%+/H9+ #%I: ;J2AC #/DE F

'% K$%/ML=NO+/P QD'H=

K+ R$9+/H :#JD+'&-¡ik $% $%/(\

+]0 #_ +R 0$%_

+ % #¢2$/;J ) #%+/(@ +P˜,I+P(

+'#&9£K/ (

+'y$% H #6+/jP# #9 / 9+ wo 

$% @T>

+¤ 0 "$%/D

$%/$%lH  $; $%+/$%/(7

+) 8  $ 3+T U#$;

#'$;Px z.||8}  i#JD+' _ +C$;  $%/D

$%/$%2AC /3 k )+/ /& * /y #%' $%+/+Tc+' "9+ #i,.$% 0 J /D 0 8 $3/H2$%/H '

$o ) #/]02=

?4#$;

#'$% .$%c)  Tb+

9 7$/ / SD-Tq+%+,B  J1@'92 J5+Tc 0 92$%/6

#'; "/H p # $%+ +9 \$%/H$%= $%+/cTb+ RTq' '

K,I+

?P$%/ p # $%+/M¥ & 2.

Y˜/@(DEFINITIONS #/  ]¦ 0 K #9$;

$%XTq+

'>

”w{• ‹ f‘ Œ ’ “  %+l?/+=,./4ZAC #/DE _

'%  eH/ #ZK

# $%+/9 ) 8[,I  #/ 0 .D: 8 ]( "/' ) 8 C+TF 8

9$/% ‹

QD'$;

@ +2#+// \9)+  $%+/ +T_ #$;

#'$;c,.$; 02 0 .

#c+TŠ 0H=c#$;

#'$;I Tb'/8 $+/P+Ta 0 /' )  +T.( 9Œ $/1 0H")+  $%+/Š&5¡ZQD'H $%+/{M$%]0H ]:  8

$² U J2˜,I+2H= ]9  

#™I/U k )+/ #/D › ”¦( #/  ]%;JU% # AR #/DZ k )+/ #/D8•-/H3#+/]/D ‘  0i,I c,.$%%

Tq 8 F + Z 0 €.8‚ƒ"œ v=qfœuw8‚ƒ¦&V`-$%('

ULM0+,.9U[J $%c k9 2+TC 0  8

9$/;:#J: +'.$%I 0 C/' ) 8 B+T-/ 8 c+T-% #/( 0 K$%/2 0H=cJ+'BTq+ R 80 )+$% % .' I+T &_`+ Z0+9+( / #+'_#$;

#'$% #$w& &_$%

#(= ] : $%/(M$%

' $%+/\' y DJM 0 #$;

#'$; )+'/H JDX 0 "#$;

#'$; #JD+'4#/Ž$%/$%  %TC ) 7 # #/V5' 

#($%+/Ž+TK/$%/e/$; #;J =

( 0+9+( #/ #+'C#JD+' &.mI0 8

Tq+

X 0 \/+

2%$%²# @,.$;

: % #/( 0U $%

$ ' $%+/ [” #•B$%R($% #/@ DJ 









 

y” • ” #•  y” • ,.0 

,.

%$ C,.$; 0 4

#

# #/DR k 

/Ha$%/RTb+

‘´ |  0 \#$;

#'$;& y” •I/U ) \#+/$ 

UR 0 \

+ H $%$;˜JPTb+ K

]/H +9;J7 #% # @/ R+T- 0 3#JD+' R +0H 3% #/( 0 x L=}w& mI0 2$% P /$;[J6Tq'/ $%+/ M” #• +Tl”w@

#($%+/Ž+T]•lU#JD+'  9 #$%' $%C 0 / ' )  R+TF%$@[,B+: P DJ9 0 K +]Š/'" )  c+T_(= \)+$; $%+/R=  0 c 9 R$%]/# ,.0$]09$%F($% #/9 DJz & * ($%/Š 0$Z$%I $

8: (= ]$%/(l $

' $%+/ZT>

+  0 c )+'/H J+T) 0 .#$;

#'$;B#JD+' & hj K/M/+, #%#'= ‹ y ™ / )+* ;@2

A-

C

˜Y /U MODEL 0$%3 # $%+/ŠXDERIVATION ,I l,.$%Z 8

$ 9 0 #+

 $%i9+ #aTq+ #:  $%2= $/(j 0 1  ]( 1/' )  2+Tl 8

9$/% ‹ .

QD'$;

f + +// #37' 

#($+/5+TB7#$;

#'$;3#JD+' K,.$; 0U 0

#3+TF 0 

%$'$;& hy B,.$%%'9 F 0 I#JD+' i9 $%'  +K ) F[,I+:˜$%9 #/$%+/H¦ ,.$; 0Ž)+$%  P(= @)+$; $%+/9  ]/( °##+ ]$%/(U +6/Ž$%+: 

+$%K2/0]/9(

$o /2 2/0]/4,.$;

#% #/( 079 

$%& mI0 6,.$ 0©³ /H0 #$%(0D@´ +Tj

#8]/(' @'

#($%+/ +T 9#JD+' C

"%+2 k 

# M$%/U2/0H=]/M'/$; # 0'R+ 

: )+/H $/(K +C 0 I/'" )  -+T)(= #iH// l DJ\ 0 B

#8]/(% c$/ )+ 04

%$  $%+/#&_`-$/%;JD,B B,.$%'9 B 0H=- 0 B#$;

#'$;i#+/: ]$%/2+/%JŽ˜,I+:= 3 0 C/ ' ) 

+T.$%/ 8

/HZ 

9$%/H ‹ y Tb+ " ]0j(= P$%/y 0 4

#($%+/ ”ub‚ƒ˜8t]‚)r‡H­rƒ˜•8™ &%

"!

"!

,.-

"!(' )+*

[” S• ‹y f‘ w ‘ ,.0 

‘ 3$Z 0 .

+ H $%%$%˜J4 0H=I3 

9$%/+// #   +9( l$R$%/D 

/HŠ +4 0 \

#($%+/Š&Bhj /PTq'  0  K ##+4: )+ l¡FQD'H= $%+/:S".Tq+%%+,.#™ #$!(' ) *

0/ ) * 213

/ )+* 213 4.-

‹y

"!(' ) *

 ‘Zw

(57698 : / ) * ;

‘ ´  “ ‘ 

”w¥•



+ +'

$%9 P9 #0Ž k9 &Y[/ # Xi 0 M $;WX 

#/ P ) ˜,I # /V 0 '

 #lTq+ ›%} ”¦ QD'

2

#($%+/]•4/ ›} N /°0 ] %Jj )  $% $/('$0 o+" 0 K' K+T-"$%/(% 4‡%r¬v†ƒi€.8‚ƒcš8s v‚X8‚ƒ › Tb+ K/DJ6”q

#]/(' 8•B

#($%+/U$_[' $;eH X& mI0 B2$/ #+/#%'$+/l +R ) Z2 iTb

+  0 F

#'% a$/l`-$%('

z$. 0H=cTq+ 3L=Nn#$;

#'$;R#JD+'   



Ÿ ¸ S › | ”|L• mI0$%F

#

$% $%+/7+/4 0 .>#JD+'FAC /Z k )+/ #/Di,cI%+ Tq+'/H DJM` #' 8 3$%/j| ˆL6x S}#JD+'.9  $%'M& G

‘ 4.2 Results for }

Y[/°`-$%('

SI 0 M # $%2 Ž%' #2+T ‘ } 

M0+,./©2 Tq'/ $%+/U+T µ Tq+ K+9 %' #R+T › y Ÿ ¸ S& * /+ 0  K$% ,O+/  0  .

'; F$%Z($% #/$/2`-$%('

R¥ ,.0$%8040+,.F 0 c  $2=  %' #.+T ‘ } R"Tq'/ $%+/M+T ›y  Tq+ K   ]o%' #.+T µ & Y˜KTq+%%+,."T>

+  0 4

#$%+' $%#'$+/y+/1 0  ) #0H$%+'

+T ›  0H=ITq+ 7'g9#$% #/D ;JV%+=, %' 7+T ›%y c9+9 k 

/H  

9$%/H% ) #%+/(U +6) 8

$9 8  4( ##&ymI0 

8Tq+

y”w¡FQD'H= $%+/ |{•

/(% 9$ 9³ Š 0 4/'" )  3+Tc(= # $/6 0$%\) 

$%9   \

($%+/ $%4 $%%.

+k$%2= #;Jj

+)+  $%+/I +yŒ NQP R &mI0 7Tq 0H 9+

9( #

2$%/+% y##+'/D  Tq+ " 0 9$%/8

$%/(6%' # +T  &\Y˜/1`-$%('

4¥X 0$%K$%K

 # 5$%/U 0 l/ =

%J5%$%/ # /H H= ]%% #Z$/

 +TI%i#'

 #CTb+ %+, ' #3+T › y & ± ' +TR 0 P$%9H84+TR 0 2

#]/( @) 

$%9   Z0$%(0  9%' 4+T µ ”¦$¦& &o

(  ) 

$%9  

]•R%+2

#';\$%/50$%(0  3% # #%3+TZ 0 ‘ } : s8t]uq—98ƒ˜8t@t w­uwv‚f”w`-$%('

•8& * "%+/(1" 0 2,.$> 0Ž+TR 0$%

($%+/9$%i'g9$ / ;Jl2%$%/4

+)+  $%+/" +C 0 B2%% #i

#: M

K>

% " B K*?   !" $#%!)#'k =V 3!0 K 6;#%$#%!/ H K 5+! !#" L  )CED7F X'[#?0#KA l0 B#'#,¢Tb+

 +TBAR #/DE C

'  0H=3/1 ) l # #/6$%/6`-$(: '

P{ & p $%/# 2 0$%4 8WX #

>= # +6³ $%/ V+T\Œ  µ ³ ·  $; 8k  /H3 +U0$%(0 8 "%' # +TKŒ  µ $%/

 ##&5`+ l2% #$;

#'$% B+ I=

( K%' #B+T µ D 0$%B WX I2#J4 ) #+9 .+"+4: $%/H/Š 0H=l¡FQD'H= $%+/{@/+M%+/(  e \ 0 

# $%+/0$%+T ‹ >

(L ({ (z (,S (¥ ( (ˆ (  A>

z & Ÿ z & Ÿ z & Ÿ z & Ÿ z & Ÿ z & Ÿ z & Ÿ z & Ÿ

z& {¥ z&%|| { &  z { & ˆ{ { & L { & ¥z { & S.S { & L{ >

Ÿ& LŸL Ÿ& {Ÿ Ÿ& z|| Ÿ& S|#z Ÿ& ¥ |{ Ÿ& |Ÿ Ÿ& ˆ |Ÿ Ÿ&  L¥ A>

>

¥ & ŸŸ ¥ & ŸŸ ¥ & ŸŸ S&    S&  ˆ S&  { S& ˆˆ S& ˆŸ

ˆ& { ˆ& ¥ ˆ& Ÿ | D& Ÿ{ SD& L z &    SD& ¥{ z & ,ˆ S > >

>

>

Ÿ& {Ÿ{ Ÿ& {zDL Ÿ& zLL Ÿ& SD|ˆ Ÿ& .¥ S{ Ÿ& ¥{ Ÿ& ˆ  Ÿ&  |#z

Experimental results for pc as a function of pi 1

Layout Rent exponent

W K980   jV2!" 3(9; K!8d@  3 ,4#'  #$%!0!/5  Q!/ '[#* 5 9; K!8d L £C

$%($%/H mŠ ]/Tb+

9  ž39 ‘ w ‘ z y z› y ‘w ‘z y ›zy ( | z & Ÿ z& {,S Ÿ&%|ŸA> ¥ & ŸŸ ˆ& {A> Ÿ& L$>ˆ

0.8

0.6

0.4

> >

W K980 UTV n^Q!/5/  0;9; !//*d?K. 3 .GC K'  3 Q!/ '[#*$#%!;F L ž39 $%²# ‘w ›%z y $ 2ŸA> zhS ¥{  S & S ˆ Ÿ & ¥,=S z $ 2Ÿˆ S |#ŸLL S &    Ÿ & >ŸL $ 2Ÿ  S {||#Ÿ ¥ & ŸA> Ÿ & S ˆˆ $ M| S |¥||ˆ.S ¥ & S.S Ÿ & ¥ |#¥ $ M|¥ |ˆL ˆŸ ¥ & z{ Ÿ & ¥,$S > $ M|2> |ˆz.>.S L >& L.S Ÿ & ¥z,S

 

'ZŒ"&_Y˜/Px;|#Ÿ D =}w p 

+D+ H/H i$ #/D $%e lC$%9$%>= Z WX #_Tb+

 0 B$%/D

$%/$%IAR #/D_H= ]9  

#& S +,I    0 I #$ $%+/o$ /:  $;e y DJy+' "9+ #¦_$%l$%/0 8

#/Dl +P 0 2J+'l$%/D 

#+//  ) 0H$+' 2/Hj 0'l

+ H ;J#+9% #9 #/D] J1 +6 0 P WX  $ #/D $%e P$%/jx;|#Ÿ ) =}w&

0.2

Theoretical curve (with theoretical wirelength distribution) Theoretical curve (with empirical wirelength distribution) Experimental results

0 0

0.2

0.4

0.6

0.8 Intrinsic Rent exponent

1

% aV

X=VY 3r* !" 0\l% 3$s;.K#%! #'`  K0$#! 9; 3 Aj 3 K!@  U3l% 3  ]l0 ]#' › !/5 › y '[#`00;9; K!*KdV L W` # 3.0O. l% K]' #:#%*#V5 0nA1$) 3# 3.0 [,I

H

H # #P$%/M' )+ $%2),.$;

#% #/( 05$%

$% '  $%+/#& mI0 " k ) 

$%9 #/D]-

#';  /HU 0 l 0 #+

 $%%;J6

 $% 

W K980 i" 7^ !/5//  0O9; K!8d K0. 7 3=V; r K!VQ0 H *#V5 0\A1 f # 3.0jA1 0 !f5/  9/#%! CE KFO!/56*#V5 08A1 8.0>A1 0 ! 65/  98 #%! CZ@TF L p1 /0  >

>

 L 7   & S.S   & { ||&%|#ˆ |=L&%|#{ ||& S{ |{ & LD|

>

‘ z} |Ÿ & ˆL   &  L |Ÿ & z{ |=L& {| |=L& z |{ &  

>

A>

">

Ÿ & ¥ ˆ Ÿ & {z Ÿ & ,¥ S  Ÿ & ¥ S Ÿ & ¥   Ÿ & ¥ | >

A>

µ6 S M| ˆ & SL ˆ & ¥|   & ˆ |Ÿ& zŸ   &  { ||& {{ >

Ÿ & L¥ Ÿ & .S Ÿ & ¥ | Ÿ & Ÿ{ Ÿ & L{ Ÿ & |#¥ >

> $> > > >

y” #•  



   O

“     O



·’

POHQR

“

 L “ L  S 

S

”| S•





” |¥• mI0$%R #9$;

$%o,.$;

#% #/( 0U $

$% ' $%+/M$%R%+90+=,./U$%/@`-$(: '

\|#Ÿ &Z¡i #/ 0+'(04$;B0Z/+3 0 #+

 $%H H8?(

+'/,.0H=: +D # 8 R,B 50H M' f$;P +y$%%' ]= 6 0 U$%9H82+T $%/#+ : )+ ]= $%/(9# #9 #/DRQD'H$;˜JP$%/@ 0 

+k $2= 7,.$;

#% #/( 0 $%

$% '  $%+/Š&ImI0 #+

 $%a' #.Tq+ ›  # $%2 P'$%/( 0$% #9

%$$%C,.$;

#% #/( 0 $%

$% '  $+/Š.0+=, /©%9+P)  Tq #8 2 ]0P,.$; 0M+' . k ) 

$%9 #/D]Š]@”w`-$%('

ˆ•8&

5.3 Impact of suboptimal layout software

tc as a function of the intrinsic Rent exponent tc

3.5 c=8 3

Experimental and approximated wirelength distributions

2.5

1

Normalized wirelength distribution





 L 7 |Ÿ&  ˆ |Ÿ& ˆ.S |=LD&  L |{& .ˆ S |{& Ÿ{ |#z &  {

%' #3Tq+ \ 0 l$ 1 ) /]02

?K

4'92

$%²# U$%/yma % { Tb+ R

#]/(% #c,.$; 0U) #. ] $%+ | /H7SD&ihj Ke/H9 0 3 9 

/HR.Tb+ . 0 \J /D 0 8 $K ) #/]02=

? #&

Increasing c

Experimental wirelength distribution Theoretical approximation of N'(l) Empirical approximation of N'(l)

0.1

,.$;

#% #/( 0#c 0 

@$%71$%(/$;eH/7 $;WX 

#/ M ) [,B # #/° )+ 0 #'

 #CTb+ \0+ K$/D 

+// # $%+/#X2?$%/(9 0 k ) 

$%9 #/D]   ]( C,.$;

#% #/( 0I$%(/$;e/D ;J90$%(0  F 0H/9 0 . 0 #+

8 $# +/ ##&mI0$%9$%

#/J ) ˜,I # #/Ž )+ 0Ž,.$;

#% #/( 0°$%

$% ' :  $%+/4$%4

#)+/$ % PTq+ 9 0 P$;WX 

#/# #9 ) ˜,I # /Ž 0 #+

8 $#

#'% #  

$% 4Tb

+ +' I9+ #¦/9 k ) 

$%9 #/D]H]&iY[/:   oX0$(0  3  ]( ",.$;

#% #/( 0C

#';3$%/690$%(0  \/'" ) 

+TF k 

/a 

9$%/%3/H@ 0'R0$%(0  \%' K+T ‘ z } &3`+ K+'

) #/802

?#D$;. # #9B 0I 0 C,.$;

#% #/( 0M $%

$ ' $%+/c

+: '# 6 J Z‰a# 99+

"+ l% # 0H  0 Tq+%+,.$%/(Ž”¦ #9$;

$%: ;J@  8

9$/ H•B ) 0H$+' ™

2 c=1

Curves for benchmark g8 1.5

0.01

1

0.001

0

0.2

0.4

0.6

0.8

1

Intrinsic Rent exponent

% (    {#V5 0% /0' #R‘ }  = $%+/0$%1Tq+ J+'K

#($%+/\+TI/DJU($% /10) &"mI0 l

: '; FTb

+ +' B9+ #/9 ) R

+k $%2 4 DJ"AC #/DE i

'% R +  

$% 3 0 ”¦ # $%2 •B>#JD+'RAR #/DcH= ]9  

#& £K'

#';  0+,^ 0H  0 

9 k $% PTb'/9 /]Z$;WX  : /# \ ) ˜,I # / › /H › y $%/0 

#/Dc + 0 3 # ) #$%/("+Ti#$; : '$; $%/y@LN¯#JD+' \9  $'M&lmI0 4#JD+'\AR #/D\ k )+/ #/D3$% ;,c#J \(

=  \ 0H/1Ÿ& S6”w2#+/#%'$%+/6 0HC,c %+PTb+

' : = "$%/2x S=}b•-/l$; -%' F$%-

( %Jl$%/H #) #/ #/D-+T 0 B) #

]= $%+l+T) 0 I

#8]/(' F

#($%+/#&F£K/ 0 c+ 0 8 B0/HX 0 c>#J: +' AR #/D\#+D g4#$% #/D $/

 #l,.$; 01$/

$/(M%' #\+TB 0 ) #\ ]= $+ & hj 0 lTb+

"' 6/6 k /H $%+/6Tb+ \ 0  

/H#/7 0 J2,I 

\#+/e

9 P DJ2 k ) 

$%9 #/D])

#'; #& mŠ+92? \+' R

#'; K9+

$;

# ;JM%$# % X$;C$%K/ # #:  = JP +"J  #2 $%;JP 'HJ7 0 3$%9Hc+T_ 0 3#JD+' . ]: (J@/H2 0 3

#'; $/(4#JD+' KQD'%$;[J7+/@ 0 3#JD+' .AC #/D.:

]9  

#&-hy c%+\>/ +3 k #/l 0 I#' 

/i9+ #D +K 0

  $%9 #/$%+/R/H2 +4#$;

#'$% c,.$; 0M"'; $;:˜$%/P#+// # $%+/#&

6.

x;|8}"GC&& * %)  &mI0 \Y p iN\ ˆ"#$;

#'$;R ) #/]02=

?9'$; &Y[/  tvœ Zv«3ƒb¨  1u]‚ƒw‡  ¬—Ksiv‚  ¨¬… uwœ r‡l8…]u%­‚ H( #RˆŸˆ,SD& * G ~ i

## * 

$i|  ˆ& x L} _&HGB0

$% $% /@N& p 

+D+ H/H &mI0 \$%/D 



] $%+/M/H %$# $%+/U+T_AC /E I

' V& utr‚…iv‚ u

¬…]ƒ˜8—"…  s œu¦r" ‡ u]… … †v‚ ¬… ƒ˜8< — x!- v‡ u]‚ƒ˜8tœ v‚‚) œƒ  t "uwœƒ¦uwv‚HN3 # # )  CLŸŸŸ & * ## #  7Tb+ C' %$% $%+/o& x {=#} & * &N3=$%# "& 4&NK H/H$  &N"& ~ #$%/¦& *  +D80 $% ,.

%$ 8:˜% #/( 0U $%

$ ' $%+/7Tq+ C($%(#% $/D #( ] $%+/y&” % p Y•   * AZmY8™ N3 

$% $%+/M/H7%$> $%+/oV & u'tr‚(… Zv‚ .‡œƒ¦tv) ‚ l vuwœ]8…]hz S”w{•8™ SˆŸ Sˆ  ~ =

801|  ˆ & x z}\h¢&H¡c&N3+/ 0Š& i# #9 /C/H@ 8 ]( \$%/D 

#+// # $%+/  /( 0.+T_#+9'   .%+($%"& utr‚(… +*_uqtœ†uqƒ¦… ,

¬…]-ƒ %XG * p  L¥ ™ L L  L DZ|#    & x S} ~ &H` '  &HGB+// # $%$;[J7+T_ ]/H + %+($V& utr‚…  v. ‚ *Zv—KsH†-ƒ HG {|™ L  {{ i| ˆL& x ¥=}l‰Z& S ( #/Š * & ± &  0/(`B/& & \' ]0$¦/H GC&AC280/H ]/o&H£K/7 0 3$%/D

$%/$%\AR #/D.H ]9  

/H7) # ]=:˜  PH  $; $%+/$%/(99  0++%+($% ##&Vu tr‚(… Zv. ‚ *Zv—CsH†-ƒ $x10R2u "D3 "4l8(…  /u]‚ƒ˜w­trƒ˜3 "5*_ubtœ†uqƒ¦… ,

¬…]-ƒ %a|{ ”|=•8™ L { 6  / ' J5|  z & x } %"&  = J$%C/H "& \'2 &¨ y8ƒ¦uq(… 780:9K¬8s8t¦­tr8s¨  rt]ƒ¦uqƒ¦uwv‚uq‚D­  r