On the Effective Dimension of Light Transport

Report 2 Downloads 53 Views
On the Effective Dimension of Light Transport Christian Lessig and Eugene Fiume Dynamic Graphics Project, Department of Computer Science, University of Toronto

2

Problem statement

[email protected]

Dynamic Graphics Project

University of Toronto

3

Problem statement

[email protected]

Dynamic Graphics Project

University of Toronto

4

Problem statement

[email protected]

Dynamic Graphics Project

University of Toronto

5

Problem statement

[email protected]

Dynamic Graphics Project

University of Toronto

6

Problem statement

[email protected]

Dynamic Graphics Project

University of Toronto

7

Problem statement

[email protected]

Dynamic Graphics Project

University of Toronto

Christian

Lessig∗

8

June 28, 2010 Problem statement

U

H2

S2

x

Z T (n(x) · ω) E(ω) dω

B(x) = H2

˜ 2 ≈ ˜ 2 = kTE − TEk kB − Bk U U

L X

tl yl0 (n(x) · ω)

T (n(x) · ω) = l=0 L X

T (n(x) · ω) = [email protected]

tl Pl (n(x) · ω) l=0 Dynamic Graphics Project

University of Toronto

kB − BkU = kTE − TEkU ≈ 

Christian

Lessig∗

9

L X

June 2010 T (n(x) · ω) = statement tl yl0 (n(x)28, · ω) Problem l=0

L X

T (n(x) · ω) =

tl Pl (n(x) · ω) l=0 U H2 S 2 x l L X X = t˜l Z ylm (n(x)) ylm (ω) B(x) l=0 =m=−lT (n(x) · ω) E(ω) dω H2

L X l X ˜ 2 ≈ ˜ 2 = kTE − TEk kB − Bk U elm ylm (ω) U E(ω) = l=0 m=−l 2 L SM X tl yl0 (n(x) · ω) T (n(x) · ω) = l=0 L X ˜ dim (T)  dim (T) T (n(x) · ω) = tl Pl (n(x) · ω) [email protected]

l=0 Dynamic Graphics Project

University of Toronto

Christian Lessig∗ kB − BkU = kTE − TEkU ≈ 

Christian

June 28, 2010 T (n(x) · ω) = Problem statement

Lessig∗

10

L X

28, 2010 tl yJune · ω) l0 (n(x) l=0

L X x Shading equation: T (n(x) · ω) = tl Pl (n(x) · ω) Z l=0 U H2 S 2 x l L B(x) = T (n(x) · ω) E(ω) dω X X H2 = ylm (n(x)) ylm (ω) t˜l Z B(x) l=0 = m=−lT (n(x) · ω) E(ω) dω 2 2 ˜ ˜ kB − Bk H2 U = kTE − TEkU ≈ 

U

H2

S2

L X l X ˜ 2 ≈ ˜ 2 = kTE − TEk kB − Bk U elm ylm (ω) U E(ω) = L X

l=0 m=−l

tl yl0 (n(x) · ω)

T (n(x) · ω) = l=0 L X

T (n(x) · ω) =

tl Pl (n(x) · ω)

2 L SM X T (n(x) · ω) = tl yl0 (n(x) · ω)

l=0

L X ˜ dim (T)  dim (T) tl Pl (n(x) · ω) T (n(x) · ω) = l L X X l=0 [email protected] Graphics Project University of Toronto = ylmDynamic (n(x)) ylm (ω) t˜l l=0

Christian Lessig∗ kB − BkU = kTE − TEkU ≈ 

Formulas 11

Christian L Christian Lessig∗ X 28, 2010 T (n(x) · ω) = tl yJune · ω) l0 (n(x) statement l=0 June 28, 2010

June 28, 2010

Problem

Lessig∗

L X x Shading equation: T (n(x) · ω) = tl Pl (n(x) · ω) Z l=0 U H2 S 2 x l L B(x) = T (n(x) · ω) E(ω) dω X X U H2 S 2 x H2 = ylm (n(x)) ylm (ω) t˜l Z Z · ω) E(ω) dω B(x) l=0 = m=−lT (n(x) 2 2 ˜ ˜ kB − Bk H2 U = kTE − TEkU ≈  T (n(x) · ω) E(ω) B(x) = L X l H2 X 2 ˜ 2 ≈ ˜ = kTE − TEk kB − Bk U elm ylm (ω) U E(ω) = 2 2 ˜ ˜ = kTE − TEk kB − Bk L l=0 m=−l U U ≈ X tl yl0 (n(x) · ω) T (n(x) · ω) = 2 L SM X l=0 T (n(x) · ω) = tl yl0X (n(x) · ω) L L X T (n(x)l=0 · ω) = tl yl0 (n(x) · ω) T (n(x) · ω) = tl Pl (n(x) · ω) L X l=0 ˜ dim (T)  dim (T)l=0 t l Pl X (n(x) · ω) T (n(x) · ω) = L l L X X [email protected] Graphics Project of Toronto· ω) tl Pl (n(x) T (n(x)l=0 · ω) = University = ylmDynamic (n(x)) ylm (ω) t˜l

U

H2

S2

Christian Lessig∗ kB − BkU = kTE − TEkU ≈  Formulas ∗ 12 Christian Lessig Christian Lessig∗ June 28, 2010 ∗ L Christian X June Lessig 28, 2010 28, 2010 T (n(x) · ω) = tl yJune · ω) l0 (n(x) Problem statement l=0 June 28, 2010

L X x Shading equation: T (n(x) · ω) = tl Pl (n(x) · ω) 2 2 U H S x 2 2 Z l=0 U H S x l L B(x) = T (n(x) · ω) E(ω) dω X X U ZH2 S 2 x H2 = ylm (n(x)) yTlm(n(x) (ω) · ω) E t˜l Z B(x) = Z ·H ω)2 E(ω) dω B(x) l=0 = m=−lT (n(x) 2 2 ˜ ˜ kB − Bk H2 U = kTE − TEkU ≈  T (n(x) · ω) E(ω) B(x) = ˜2 2 = kTE − TEk ˜ L X l H kB − Bk X U 2 2 ˜ ˜ = kTE − TEk kB − Bk U elm ylm (ω) U ≈  E(ω) = 2 2 ˜ ˜ = kTE − TEk kB − Bk L l=0 m=−l U U ≈ X tl yl0 (n(x) · ω) T (n(x) · ω) = L X 2 L X · ω) = l=0 M TS(n(x) tl yl0 (n(x) · ω T (n(x) · ω) = tl yl0X (n(x) · ω) L L X l=0 T (n(x)l=0 · ω) = tlLyl0 (n(x) · ω) T (n(x) · ω) = tl Pl (n(x) · ω) X L X l=0 ˜ T tl Pl (n(x) · ω (n(x) ω)l=0 = dim (T) dim· (T) t l Pl X (n(x) · ω) T (n(x) · ω) = L l L X X l=0 [email protected] Graphics Project of Toronto· ω) tlLPl (n(x) T (n(x)l=0 · ω) = University = ylmDynamic (n(x)) ylm (ω) t˜l l

U

H2

S2

Formulas Christian Lessig∗ kB − BkU = kTE − TEkU ≈  Formulas ∗ 13 Christian Lessig ∗ ∗ Christian Lessig June 28, 2010 Christian Lessig ∗ L Christian X June Lessig 28, 2010 28, 2010 T (n(x) · ω) = tl yJune · ω) l0 (n(x) June 28, 2010 Problem statement l=0 June 28, 2010

L X x Shading equation: T (n(x) · ω) = tl Pl (n(x) · ω) 2 2 U H S x 2 2 Z l=0 U H S x U H2 S 2 x l L B(x) = T (n(x) · ω) E(ω) dω X X U ZH2 S 2 x = ylm (n(x)) yTlm(n(x) (ω) · ω) E t˜l Z B(x) Z H2 = Z ·H ω)2 E(ω) dω B(x) l=0 = m=−lT (n(x) B(x) = T (n(x) · ω) E(ω) dω 2 2 ˜ ˜ 2 = kTE − TEk ≈  kB − Bk H2 U U Objective: H T (n(x) · ω) E(ω) B(x) = ˜2 2 = kTE − TEk ˜ L X l H kB − Bk X U 2 2 ˜ ˜ 2 2 = kTE − TEk kB − Bk ˜ ˜ U elm ylm (ω) U ≈  = kB − BkU = kTE − TEkU ≈E(ω)  2 2 ˜ ˜ = kTE − TEk kB − Bk L l=0 m=−l U U ≈ X tl yl0 (n(x) · ω) T (n(x) · ω) = L X 2 L X · ω) = l=0 L M TS(n(x) tl yl0 (n(x) · ω X tl yl0X (n(x) · ω) L L t y (n(x) · ω) T (n(x) · ω) = T (n(x) · ω) = X l=0 l l0 T (n(x)l=0 · ω) = tlLyl0 (n(x) · ω) T (n(x) · ω) =l=0 tl Pl (n(x) · ω) X L X l=0 ˜ T L tl Pl (n(x) · ω (n(x) ω)l=0 = dim (T) dim· (T) X t l Pl X (n(x) · ω) T (n(x) · ω) = L l L t PX T (n(x) · ω) = X l=0 l l (n(x) · ω) [email protected] Graphics Project of Toronto· ω) tlLPl (n(x) T (n(x)l=0 · ω) = University =l=0 t˜l ylmDynamic (n(x)) ylm (ω) l

U

H2

S2

∗ kB − BkU = kTE − TEkU ≈  Formulas Christian Lessig L X Formulas ∗ 14 Christian Lessig T (n(x) · ω) = tl yl0 (n(x) · ω) ∗ ∗ Christian Lessig June 28, 2010 Christian Lessig l=0 ∗ L Christian Lessig X June 28, 2010 L X 28, 2010 T (n(x) · ω) = tl yJune · ω) l0 (n(x) June 28, 2010 Problem statement tl Pl (n(x) · ω) T (n(x) · ω) = l=0 June 28, 2010 l=0

L 2 2 X U H S x l L X X Shading˜equation: T (n(x) · ω) = tl Pl (n(x) · ω) 2 2 = ylm (n(x)) ylm (ω) tl U H S x 2 2 Z l=0 2 U H S x U Hm=−l S2 x l=0 l L B(x) = T (n(x) · ω) E(ω) dω X X U ZH2 S 2 x H2 = ylm (n(x)) yTlm(n(x) (ω) · ω) E t˜l Z B(x) ZX L X l = Z ·H ω)2 E(ω) dω B(x) l=0 = m=−lT (n(x) B(x) = T (n(x) · ω) E(ω) dω e y (ω) E(ω) = 2 2 lm lm ˜ ˜ 2 = kTE − TEk ≈  kB − Bk H2 U U Objective: H m=−l T (n(x) · ω) E(ω) B(x) = l=0 ˜2 2 = kTE − TEk ˜ L X l H kB − Bk X U 2 2 ˜ ˜ 2 2 = kTE − TEk kB − Bk ˜ ˜ U 2 elm ylm (ω) U ≈  = kB − BkU =SkTE − TEkU ≈E(ω)  2 2 M ˜ ˜ = kTE − TEk kB − Bk L l=0 m=−l U U ≈ X tl yl0 (n(x) · ω) T (n(x) · ω) = L with X 2 L S(n(x) X · ω) = l=0 L M T tl yl0 (n(x) · ω X ˜ T) dim (T) T (n(x) · ω) = tl yl0X (n(x) · ω) L L t T (n(x) · ω)dim = (X l=0 l yl0 (n(x) · ω) T (n(x)l=0 · ω) = tlLyl0 (n(x) · ω) T (n(x) · ω) =l=0 tl Pl (n(x) · ω) X L X l=0 ˜ T L tl Pl (n(x) · ω (n(x) ω)l=0 = dim (T) dim· (T) X t l Pl X (n(x) · ω) T (n(x) · ω) = L L t PX l T (n(x) · ω) = X (n(x) · ω) l=0 l l ˜ T˜ T [email protected] Graphics Project of Toronto· ω) tlLPl (n(x) T (n(x)l=0 · ω) = University =l=0 tl ylmDynamic (n(x)) ylm (ω) l

∗ kB − BkU = kTE − TEkU ≈  Formulas Christian Lessig L X Formulas ∗ 15 Christian Lessig T (n(x) · ω) = tl yl0 (n(x) · ω) ∗ ∗ Christian Lessig June 28, 2010 Christian Lessig l=0 ∗ L Christian Lessig X June 28, 2010 L X 28, 2010 T (n(x) · ω) = tl yJune · ω) l0 (n(x) June 28, 2010 Problem statement tl Pl (n(x) · ω) T (n(x) · ω) = l=0 June 28, 2010 l=0

L 2 2 X U H S x l L X X Shading˜equation: T (n(x) · ω) = tl Pl (n(x) · ω) 2 2 = ylm (n(x)) ylm (ω) tl U H S x 2 2 Z l=0 2 U H S x U Hm=−l S2 x l=0 l L B(x) = T (n(x) · ω) E(ω) dω X X U ZH2 S 2 x H2 = ylm (n(x)) yTlm(n(x) (ω) · ω) E t˜l Z B(x) ZX L X l = Z ·H ω)2 E(ω) dω B(x) l=0 = m=−lT (n(x) B(x) = T (n(x) · ω) E(ω) dω e y (ω) E(ω) = 2 2 lm lm ˜ ˜ 2 = kTE − TEk ≈  kB − Bk H2 U U Objective: H m=−l T (n(x) · ω) E(ω) B(x) = l=0 ˜2 2 = kTE − TEk ˜ L X l H kB − Bk X U 2 2 ˜ ˜ 2 2 = kTE − TEk kB − Bk ˜ ˜ U 2 elm ylm (ω) U ≈  = kB − BkU =SkTE − TEkU ≈E(ω)  2 2 M ˜ ˜ = kTE − TEk kB − Bk L l=0 m=−l U U ≈ X tl yl0 (n(x) · ω) T (n(x) · ω) = L with X 2 L S(n(x) X · ω) = l=0 L M T tl yl0 (n(x) · ω X ˜ T) dim (T) T (n(x) · ω) = tl yl0X (n(x) · ω) L L t T (n(x) · ω)dim = (X l=0 l yl0 (n(x) · ω) T (n(x)l=0 · ω) = tlLyl0 (n(x) · ω) T (n(x) · ω) =l=0 tl Pl (n(x) · ω) X effective dimension L X l=0 ˜ T L tl Pl (n(x) · ω (n(x) ω)l=0 = dim (T) dim· (T) X t l Pl X (n(x) · ω) T (n(x) · ω) = L l L t PX T (n(x) · ω) = X (n(x) · ω) l=0 l l ˜ T˜ T [email protected] Graphics Project of Toronto· ω) tlLPl (n(x) T (n(x)l=0 · ω) = University =l=0 tl ylmDynamic (n(x)) ylm (ω) l

2

˜ 2 ≈ ˜ 2 = kTE − TEk kB − Bk U U

Formulas Christian Lessig∗ Lessig∗

16

Christian ∗ L Christian Lessig June 28, 2010 X 28, 2010 SimplificationT (n(x) · ω) = tl yJune l0 (n(x) · ω) June 28, 2010 l=0 Z

T (n(x) ·Tω) E(ω)· ω) dω = (n(x)

B(x) =

L X

tl Pl (n(x) · ω) U H2 S 2 x Z U H2 S 2 x l=0 2 2 l L Z T (n(x) · ω) E(ω) dω X B(x) = U H S x X Z S2 = ylm (n(x)) yTlm (ω) · ω) E t˜l B(x) = (n(x) Z X X Z ·H ω)2 E(ω) dω B(x) = m=−lT (n(x) l=0 ˜ tl ylm (n(x)) ylm (ω) = el0Hm20 yl0 m0 (ω) dω T (n(x) · ω) E(ω) B(x) = S 2 l,m l0 ,m0 ˜2 2 = kTE − TEk ˜ H kB − Bk L l Z U 2 2 X X ˜ ˜ XX kB − Bk U = kTE − TEkU ≈  y0 (ω) E(ω) = ylm (ω) yellm 0˜ t˜l el0 m0 ylm (n(x)) dω = 2lm (ω) m ˜ 2 ≈ = kTE − TEk kB − Bk U U S 2l=0 m=−l l,m l0 ,m0 Z L X XX L 2X ˜ S T (n(x) ω)0 (ω) = dω tl yl0 (n(x) · ω tl el0 m0 ylm (n(x)) ylm (ω) = M yl·0 m T (n(x) S· 2ω) = tl yl0X (n(x) · ω) L l=0 l,m l0 ,m0 | {z } l=0 T (n(x)δll·0 ω) tlLyl0 (n(x) · ω) δmm= 0 X L X X · ω)l=0 tl Pl (n(x) · ω T (n(x) = ˜ dim· ω) (T)= dim (T) = t˜l elm ylm (n(x))T (n(x) t l Pl X (n(x) · ω) L l=0 [email protected] l,m Dynamic Graphics Project of Toronto· ω) tlLPl (n(x) T (n(x)l=0 · ω) = University l H2

17

2

Simplification Z T (n(x) · ω) E(ω) dω

B(x) = H2

Z

T (n(x) · ω) E(ω) dω

B(x) = S2

Z

X

X t˜l ylm (n(x)) ylm (ω)

= S 2 l,m

el0 m0 yl0 m0 (ω) dω

Z

XX

l0 ,m0

t˜l el0 m0 ylm (n(x))

=

S2

l,m l0 ,m0

Z

XX t˜l el0 m0 ylm (n(x))

=

ylm (ω) yl0 m0 (ω) dω

l,m l0 ,m0

ylm (ω) yl0 m0 (ω) dω S2 | {z } δll0 δmm0

X = [email protected] l,m

t˜l elm ylm (n(x)) Dynamic Graphics Project

University of Toronto

2 18

Z

Simplification T (n(x) · ω) E(ω) dω B(x) = H2

Z

T (n(x) · ω) E(ω) dω

B(x) = S2

Z

X

X t˜l ylm (n(x)) ylm (ω)

= S 2 l,m

el0 m0 yl0 m0 (ω) dω

Z

XX

l0 ,m0

t˜l el0 m0 ylm (n(x))

=

S2

l,m l0 ,m0

Z

XX t˜l el0 m0 ylm (n(x))

=

ylm (ω) yl0 m0 (ω) dω

l,m l0 ,m0

ylm (ω) yl0 m0 (ω) dω 2 |S {z } δll0 δmm0

X t˜l elm ylm (n(x))

= l,m

[email protected]

X

Dynamic Graphics Project

˜

University of Toronto

2 19

Z

Simplification T (n(x) · ω) E(ω) dω B(x) = H2

Z

T (n(x) · ω) E(ω) dω

B(x) = S2

Z

X

X t˜l ylm (n(x)) ylm (ω)

= S 2 l,m

el0 m0 yl0 m0 (ω) dω

Z

XX

l0 ,m0

t˜l el0 m0 ylm (n(x))

=

S2

l,m l0 ,m0

Z

XX t˜l el0 m0 ylm (n(x))

=

ylm (ω) yl0 m0 (ω) dω

l,m l0 ,m0

ylm (ω) yl0 m0 (ω) dω 2 |S {z } δll0 δmm0

X t˜l elm ylm (n(x))

= l,m

[email protected]

X

Dynamic Graphics Project

˜

University of Toronto

2 Z 20

T (n(x) · ω) E(ω) dω

B(x) = 2

ZH Z

T (n(x) · ω) E(ω) dω B(x) = Simplification B(x) = S T (n(x) · ω) E(ω) dω 2 H2

Z Z

X X = el0 m0 yl0 m0 (ω) dω t˜l ylm (n(x)) ylm (ω) B(x) = S 2 T (n(x) · ω) E(ω) dω l0 ,m0 S 2 l,m Z Z X XX 0 ylm (n(x)) = (n(x)) ylm (ω) ylme(ω) t˜t˜llyelm l0 m0 yl0 m0 (ω) dω l0 m S 2 ll,m 0 ,m0 l,m

Sl20 ,m0

Z

XX t˜l el0 m0 ylm (n(x))

ylm (ω) yl0 m0 (ω) dω S2 l,m l0 ,m0 | {z } Z XX δll0 δmm0 t˜l el0 m0 ylm (n(x)) ylm (ω) yl0 m0 (ω) dω =X 2 = l,m tl˜0l,m elm ylm (n(x)) 0 |S {z } =

l,m

δll0 δmm0

X =

t˜l elm ylm (n(x)) X l,m t˜l elm ylm (n(x)) B(x) = l,m

[email protected]

X

Dynamic Graphics Project

˜

University of Toronto

2 Z 21

T (n(x) · ω) E(ω) dω

B(x) = 2

ZH Z

T (n(x) · ω) E(ω) dω B(x) = Simplification B(x) = S T (n(x) · ω) E(ω) dω 2 H2

Z Z

X X = el0 m0 yl0 m0 (ω) dω t˜l ylm (n(x)) ylm (ω) B(x) = S 2 T (n(x) · ω) E(ω) dω l0 ,m0 S 2 l,m Z Z X XX 0 ylm (n(x)) = (n(x)) ylm (ω) ylme(ω) t˜t˜llyelm l0 m0 yl0 m0 (ω) dω l0 m S 2 ll,m 0 ,m0 l,m

Sl20 ,m0

Z

XX t˜l el0 m0 ylm (n(x))

ylm (ω) yl0 m0 (ω) dω S2 l,m l0 ,m0 | {z } Z XX δll0 δmm0 t˜l el0 m0 ylm (n(x)) ylm (ω) yl0 m0 (ω) dω =X 2 = l,m tl˜0l,m elm ylm (n(x)) 0 |S {z } =

l,m

δll0 δmm0

X =

t˜l elm ylm (n(x)) X l,m t˜l elm ylm (n(x)) B(x) = l,m

[email protected]

X

Dynamic Graphics Project

˜

University of Toronto

l,m

|

l0 ,m0

S2

˜l el0 m0 ylm (n Formulas = t 2 2 ˜ ˜ kB{z − BkU = kTE } − TEkU0 ≈ 0

X t˜l elm ylm (n(x))

= l,m

l,m l ,m

δll0 δmm0

SimplificationT (n(x) · ω) = X

22

∗ Christian Lessig X L X

= t˜l elm ylm (n(x)) 28,· ω) 2010 tl yJune l0 (n(x)l,m

l=0

L X X ˜ tl elm ylm (n(x)) B(x) = ˜l e tl Pl (n(x) · ω) B(x) = T (n(x) · ω) = t l,m 2 2 U H S x l=0 l,m L X

2 n(x) w ω ∈ SM

l X Z = ylm (n(x)) ylm (ω) t˜l dω w ω B(x) = m=−lT (n(x) · ω) E(ω) l=0 n(x)

H2

L X l2 2 X ˜ ˜ kB − Bk = kTE − TEk X U U ≈ elm ylm (ω) X t˜l elm ylm (ω) E(ω) = B(ω) = ˜l l=0 m=−l B(ω) = t l,m l,m X L 2X X SM blm ylm (ω) = b T (n(x) · ω) = tl yl0 (n(x) · ω) = l,m l,m

l=0 L X ˜  dim (T) dim ( T) T (n(x) · ω) = tl Pl (n(x) · ω) [email protected]

Dynamic Graphics Project

l=0

University of Toronto

l,m

l0 ,m0

X = X t˜l elm ylm (n(x)) = l,m t˜l elm ylm (n(x)) l,m

|

S2

δll0 δ− ˜0 2 mm kB Bk {z U δll0 δmm0

Simplification T (n(x) · ω) = X

˜l el m Formulas t = 2 ˜ = kTE } − TEk ≈ 

L X

0

U l,m l0 ,m0

0

ylm (n

23

∗ Christian Lessig X

t˜l elm ylm (n(x)) = 28,· ω) 2010 tl yJune l0 (n(x)l,m

l=0 B(x) = X t˜l elm ylm (n(x)) L X X l,m ˜ tl elm ylm (n(x)) B(x) = ˜l e tl Pl (n(x) · ω) B(x) = T (n(x) · ω) = t l,m 2 2 U H S x l=0 l,m 2 but n(x) w ω ∈ SM 2 n(x) w ω ∈ SM

L X

l X Z = ylm (n(x)) ylm (ω) t˜l dω w ω B(x) = m=−lT (n(x) · ω) E(ω) l=0 n(x)

H2

X L X l2 X B(ω) = X t˜l elm ylm (ω) ˜ ˜ 2 ≈ kB − BkU = kTE − TEk U e y (ω) E(ω) = lm lm X B(ω) = l,m t˜l elm ylm (ω) X ˜l l=0 m=−l t B(ω) = l,m b =X lm ylm (ω) l,m L 2 X X SM = l,m blm ylm (ω) b T (n(x) · ω) = tl yl0 (n(x) · ω) = l,m l,m

l=0 L X ˜  dim (T) dim ( T) T (n(x) · ω) = tl Pl (n(x) · ω) [email protected]

Dynamic Graphics Project

l=0

University of Toronto

˜l el0 m0 ylm (n Formulas 2 t = ˜ 2 δ S 0 δmm˜ 0 2 ˜ t e y (n(x)) 0 0 ll l lm lm kB{z − BkU = kTE l,m l ,m | } − TEkU0 ≈ 0 X l,m l ,m 24 l,m ˜ δ δ 0 0 ll mm = X tl elm ylm (n(x)) ∗ Christian Lessig X = l,m t˜l elm ylm (n(x)) ˜l elm ylm (n(x)) L X t = X l,m June 28, 2010 t˜l elm ylm (n(x)) B(x) = T (n(x) · ω) = t y (n(x) · ω) l,m l l0 X l,m ˜ l=0 B(x) = X tl elm ylm (n(x)) L X X l,m ˜ tl elm ylm (n(x)) B(x) = ˜l e tl Pl (n(x) · ω) B(x) = T (n(x) · ω) = t 2 2 2 n(x)l,m w ω ∈ SM U H S x l=0 l,m

=

Simplification

2 but n(x) w ω ∈ SM

L X

l X Z = ylm (n(x)) ylm (ω) t˜l dω w ω B(x) = m=−lT (n(x) · ω) E(ω) l=0 n(x)

2 n(x) w ω ∈ S M X H2 t˜l elm ylm (ω) B(ω) = X l,m ˜ L X l2 2 X t B(ω) =X e y (ω) ˜ ˜ l lm lm kB − Bk = kTE − TEk X U U ≈ elm ylm (ω) E(ω) = X (ω) lmy t˜l eylm B(ω)== l,mblm (ω) lm X ˜l l=0 m=−l t B(ω) = l,m l,m b =X lm ylm (ω) l,m L 2 X X SM = l,m blm ylm (ω) b T (n(x) · ω) = tl yl0 (n(x) · ω) = l,m l,m

l=0 L X ˜  dim (T) dim ( T) T (n(x) · ω) = tl Pl (n(x) · ω) [email protected]

Dynamic Graphics Project

l=0

University of Toronto

˜l el0 m0 ylm (n Formulas 2 t = ˜ 2 δ S 0 δmm˜ 0 2 ˜ t e y (n(x)) 0 0 ll l lm lm kB{z − BkU = kTE l,m l ,m | } − TEkU0 ≈ 0 X l,m l ,m 25 l,m ˜ δ δ 0 0 ll mm = X tl elm ylm (n(x)) ∗ Christian Lessig X = l,m t˜l elm ylm (n(x)) ˜l elm ylm (n(x)) L X t = X l,m June 28, 2010 t˜l elm ylm (n(x)) B(x) = T (n(x) · ω) = t y (n(x) · ω) l,m l l0 X l,m ˜ l=0 B(x) = X tl elm ylm (n(x)) L X X l,m ˜ tl elm ylm (n(x)) B(x) = ˜l e tl Pl (n(x) · ω) B(x) = T (n(x) · ω) = t 2 2 2 n(x)l,m w ω ∈ SM U H S x l=0 l,m

=

Simplification

2 but n(x) w ω ∈ SM

L X

l X Z = ylm (n(x)) ylm (ω) t˜l dω w ω B(x) = m=−lT (n(x) · ω) E(ω) l=0 n(x)

2 n(x) w ω ∈ S M X H2 t˜l elm ylm (ω) B(ω) = X l,m ˜ L X l2 2 X t B(ω) =X e y (ω) ˜ ˜ l lm lm kB − Bk = kTE − TEk X U U ≈ elm ylm (ω) E(ω) = X (ω) lmy t˜l eylm B(ω)== l,mblm (ω) lm X ˜l l=0 m=−l t B(ω) = l,m l,m b =X lm ylm (ω) l,m L 2 X X SM = l,m blm ylm (ω) b T (n(x) · ω) = tl yl0 (n(x) · ω) = l,m l,m

l=0 L X ˜  dim (T) dim ( T) T (n(x) · ω) = tl Pl (n(x) · ω) [email protected]

Dynamic Graphics Project

l=0

University of Toronto

4π |{z}



|

λi ≈1





C K() = + log 4π |{z} |

Approximation λi ≈1

{z

}

λi ∈[1,]

26



 1− B(∂U) log(C) + o(log C) | {z }  {z } λi ≈0 λi ∈[1,]

Objective 2 ˜ 2 ≈ ˜ kB(ω) − B(ω)k = kTE − TEk U U

[email protected]

Dynamic Graphics Project

University of Toronto

4π |{z}

i=1

|

λi ≈1

{z

} 27

λi ∈[1,]

 1 2− 

C 2+ o(log C) log(C) K() = B(ω) + −log ˜bi kϕ ˜

= B(∂U) B(ω) (ω)k i U | {z } 4π U |{z} | {z } i=K+1 λi ≈0 





N X

Approximation λi ≈1

Objective

λi ∈[1,]

N X 2 kϕ (ω)k ˜ 2 ≈ ˜ i kB(ω) − B(ω)k = kTE − TEk U U i=K+1

We are interested in a basis





ϕi (ω) | i = 1 . . . (L + 1)2 , span (ϕi ) = H≤L i

2

kϕi (ω)kU

[email protected]

,

i = K + 1...N

Dynamic Graphics Project

University of Toronto

4π |{z}

i=1 Formulas {z

|

λi ≈1

} 28

λi ∈[1,]

 Lessig  ∗  Christian N 1 2−  X

C 2+ o(log C) log(C) K() = B(ω) + −log ˜bi kϕ ˜

= B(∂U) B(ω) (ω)k i U | {z } 4π U |{z} {z 2010 } i=K+1 {ϕi (ω)} , i |= 1 . .June . N 23, λi ≈0 

Approximation λi ≈1

λi ∈[1,]

Objective

span (ϕi ) = i

N X 2 kϕ (ω)k ˜ 2 ≈ ˜ i kB(ω) − B(ω)k = kTE − TEk U U span (yL{ϕ)i=K+1 H≤L (ω)} , i = 1...N i=

l,m We are interested in a basis





ϕi (ω) | i = 1 . . . (L + 1)2 , span (ϕi ) = H≤L span (ϕi ) = span (yi L ) = H≤L K X

i

l,m

˜bdimension ˜ effective B(ω) ≈ with B(ω) = , K  N such that i ϕi 2

i=1kϕi (ω)kU

,

iK = K + 1...N X ˜bi ϕi , K  N ˜ B(ω) ≈ B(ω) = i=1

2

˜

=

B(ω) − B(ω) U [email protected]



N X

˜bi kϕi (ω)kN2 U X

Dynamic Graphics Project 2

˜

˜

2University of Toronto

span (ϕi ) = span (yL ) = H≤L i

l,m

Approximation ˜ B(ω) ≈ B(ω) =

K X

29

˜bi ϕi

,

KN

i=1

Approximation error N X

2 ˜bi kϕi (ω)k2 ˜

B(ω) − B(ω)

= U U i=K+1

N X

kϕi (ω)k i=K+1



 ϕi (ω) | i = 1 . . . (L + 1)2 , span (ϕi ) = H≤L i

[email protected]

2

kϕi (ω)kDynamic , Graphics i =Project K + 1...N U

University of Toronto

(yL ) = H≤L span (ϕi ) = spanX N

˜bi kϕi (ω)k2 ˜

B(ω) −i B(ω)

2 =l,m U U

30

i=K+1

Approximation ˜ B(ω) ≈ B(ω) N=

K X

X

˜bi ϕi

,

KN

i=1 i=K+1 Approximation error

kϕi (ω)k

N X

2

˜bi kϕi (ω)k2  ˜

=

B(ω) − B(ω)  U U 2i=K+1 ϕi (ω) | i = 1 . . . (L + 1) , span (ϕi ) = H≤L i

which, for arbitrary input signals, is minimized if N X (ω)k , ikϕ = iK + 1...N

2

kϕi (ω)kU

i=K+1

is minimal. 



ϕi (ω) | i = 1 . . . (L + 1)2 , span (ϕi ) = H≤L i

[email protected] [email protected]

2

kϕi (ω)kDynamic , Graphics i =Project K + 1...N U

University of Toronto

31

Spatio-Spectral Concentration Theory

[email protected]

Dynamic Graphics Project

University of Toronto





C K() = + log 4π |{z} | λi ≈1



 1− B(∂U) log(C) + o(log C) | {z }  {z } λi ≈0

32

λi ∈[1,]

Spatio-Spectral Concentration Theory D gi = λi gi

Objective: Extremize concentration measure1 λ=

2 kgkU 2 kgkS 2

R 2 g dω U =R 2 dω g 2 S

g ∈ H≤L

,

2

C = N A(U) = (L + 1) A(U)

    1− C + log B(∂U) log(C) + o(log C) K() =  4π |{z} λi ≈1

 1− C + log B(∂U) log(C) +o(log C) K() =  4π |{z} [email protected] Project | Dynamic Graphics{z } University of Toronto 1







Simons FJ, Dahlen FA, Wieczorek MA. Spatiospectral Concentration on a Sphere. SIAM Review. 2006;48(3):504-536; Simons FJ. Slepian Functions and Their Use in Signal Estimation and Spectral Analysis. In: Freeden W Handbook of Geomathematics.; 2010.

 C K() = + log 4π |{z} | λi ≈1





 1− B(∂U) log(C) + o(log C) | {z }  {z } λi ≈0

33

λi ∈[1,]

Spatio-Spectral Concentration Theory D gi = λigi 1− C +Extremize log B(∂U) log(C) measure + o(log C)1 K() = Objective: concentration  4π R 2 2 U g dω   kgk U C λ= 1 −= R , g ∈ H≤L 2 2 B(∂U) log(C) + o(log C) K() = + log kgk 2 g dω 2 S S | {z } 4π  |{z} | {z } λi ≈0





λi ≈1Eigenvalue problem Solution: λi ∈[1,]

2

C = N A(U) = (L + 1) A(U) D gi = λi gi    R 1g− C 2 2  dω B(∂U) log(C) + o(log C) kgk + K() = U logR U λ = 4π 2 = , g ∈ H≤L  2 |{z} g dω kgkS 2 S2 λi ≈1 Simons FJ, Dahlen FA, Wieczorek MA. Spatiospectral Simons FJ. Slepian Functions and Their Use in Concentration  on a Sphere. SIAM  Review. 2006;48(3):504-536;  Signal Estimation and Spectral Analysis. In: Freeden W Handbook of Geomathematics.; 2010. 1− C + log B(∂U) log(C) +o(log C) K() = 2 4π= N A(U) = (L + 1) A(U) C |{z} [email protected] Project | Dynamic Graphics{z } University of Toronto 1

 C 1− K() = B(∂U) log(C) + o(log C) + log June 27, 2010 | {z } 4π  |{z} | {z } λi ≈0 

λi ≈1





34

λi ∈[1,]

Spatio-Spectral Concentration Theory D gi = λigi  1kgk − 2 C 1 Uconcentration +Extremize log B(∂U) log(C) + o(log C) K() = Objective: measure λ = , g ∈ H ≤L 2  4π kgkS 2R 2 U g 2 dω   kgk U C λ= 1 −= R , g ∈ H≤L 2 2 B(∂U) log(C) + o(log C) K() = + log kgk 2 g dω 2 S S | {z } T 4π  D g g |{z} | {z } λi ≈0 λ = λ ≈1 T i Solution: Eigenvalue problem λi ∈[1,] g g 2 C = N A(U) = (L + 1) A(U) D gi = λi gi



where



D = {dlm,l0 m0 }    RZ C 20 0 = 1 − 2y  (ω) y 0 0 (ω) dω d g dω lm,l m lm B(∂U) lm kgk log(C) + o(log C) + K() = U logR U λ = 4π 2 = , g ∈ H≤L U  2 |{z} g dω kgkS 2 S2 λi ≈1 Simons FJ, Dahlen FA, Wieczorek MA. Spatiospectral Simons FJ. Slepian Functions and Their Use in Concentration  on a Sphere. SIAM  Review. 2006;48(3):504-536;  Signal Estimation and Spectral Analysis. Z In: Freeden W Handbook of Geomathematics.; 2010. 1− C +D(ω, logω B(∂U) log(C) +o(log C) K() = ¯ ) g (¯ ω ) dω = 2 λi gi (ω) i 4π=U N A(U) = (L + 1) A(U) C |{z} [email protected] Project | Dynamic Graphics{z } University of Toronto 1

35

Spatio-Spectral Concentration Theory λ = 0.998093

[email protected]

Dynamic Graphics Project

University of Toronto

36

Spatio-Spectral Concentration Theory λ = 0.998093

[email protected]

λ = 0.968958

Dynamic Graphics Project

University of Toronto

37

Spatio-Spectral Concentration Theory λ = 0.998093

[email protected]

λ = 0.968958

λ = 0.968958

Dynamic Graphics Project

University of Toronto

38

Spatio-Spectral Concentration Theory λ = 0.998093

[email protected]

λ = 0.968958

λ = 0.968958

Dynamic Graphics Project

λ = 0.814437

University of Toronto

39

Spatio-Spectral Concentration Theory λ = 0.998093

[email protected]

λ = 0.968958

λ = 0.968958

Dynamic Graphics Project

λ = 0.814437

λ = 0.814437

University of Toronto

40

Spatio-Spectral Concentration Theory λ = 0.998093

λ = 0.968958

λ = 0.968958

λ = 0.814437

λ = 0.814437

λ = 0.000189436

[email protected]

Dynamic Graphics Project

University of Toronto

41

Spatio-Spectral Concentration Theory λ = 0.998093

λ = 0.968958

λ = 0.000189436

λ = 0.000189436

[email protected]

λ = 0.968958

Dynamic Graphics Project

λ = 0.814437

λ = 0.814437

University of Toronto

42

Spatio-Spectral Concentration Theory λ = 0.998093

λ = 0.968958

λ = 0.968958

λ = 0.000189436

λ = 0.000189436

λ = 0.000125893

[email protected]

Dynamic Graphics Project

λ = 0.814437

λ = 0.814437

University of Toronto

43

Spatio-Spectral Concentration Theory λ = 0.998093

λ = 0.968958

λ = 0.968958

λ = 0.814437

λ = 0.000189436

λ = 0.000189436

λ = 0.000125893

λ = 0.000100997

[email protected]

Dynamic Graphics Project

λ = 0.814437

University of Toronto

44

Spatio-Spectral Concentration Theory λ = 0.998093

λ = 0.968958

λ = 0.968958

λ = 0.814437

λ = 0.814437

λ = 0.000189436

λ = 0.000189436

λ = 0.000125893

λ = 0.000100997

λ = 0.000100997

[email protected]

Dynamic Graphics Project

University of Toronto

45

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

46

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50 Θ = 40

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

47

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50 Θ = 40 Θ = 30

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

48

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

49

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20 Θ = 10

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

50

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20 Θ = 10 Θ=5

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

51

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

52

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50 Θ = 40

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

53

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50 Θ = 40 Θ = 30

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

54

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

55

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20 Θ = 10

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

56

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20 Θ = 10 Θ=5

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

57

Spatio-Spectral Concentration Theory 2

Spectrum (conjecture): 





 B(∂U) log(C) + o(log C)

1− C + log K() = 4π      1− C B(∂U) log(C) + o(log C) + log K() = | {z }  4π |{z} | {z } λi ≈0 λi ≈1

λi ∈[1,]

D gi = λi gi

λ= [email protected]

2 kgkU 2 kgkS 2

R 2 g dω U =R 2 dω g 2 S Dynamic Graphics Project

,

g ∈ H≤L University of Toronto



 

C + log K() = 4π |{z} |





 1− B(∂U) log(C) + o(log C) | {z }  {z } λi ≈0

58

λ ≈1 Spatio-Spectral Concentration Theory λ ∈[1,] i

2

i

D gi = λi gi

Spectrum (conjecture):

    1R− 2 C 2 g dωB(∂U) log(C) + o(log C) + K() = kgklog U U R λ4π = , g ∈ H≤L 2 = 2 dω kgkS 2  S 2 g   1− C with B(∂U) log(C) + o(log C) + log K() = | {z }  4π |{z} | N A(U) = (L{z+ 1)2 A(U) } λi ≈0 C = λi ≈1 λi ∈[1,]

D gi = λi gi     1− C + log B(∂U) log(C) + o(log C) K() = R 4π |{z} 2 2 g dω kgk λi ≈1 U U λ =  2 = R  2 , g ∈ H≤L kgkS 2 1 −S2 g dω C + log Dynamic Graphics B(∂U) log(C) +o(log C) of Toronto K() = [email protected] Project University  4π

C 1− K() = + log B(∂U)  log(C) + o(log C)    4πC 1 −  B(∂U) log(C) + o(log C) + log K() =    4π |{z} 1 − C + log B(∂U) log(C) + o(log C) K() = λi ≈1 | {z }  4π     |{z} | {z } C 1 −  λi ≈0 λ ≈1 i K() = + log B(∂U) log(C) +o(log C) λi ∈[1,] 4π  |{z} | {z } Spectrumλ(conjecture): i ≈1 D gi =λλ i gi i ∈[1,]     C 1− B(∂U) log(C) + o(log C) K() = + log | {z } 4π R  2 |{z} 2 | {z } g dω kgk λi ≈0 U U λ ≈1 i R λ= g ∈ H≤L λi ∈[1,], 2 = 2 g dω kgkS 2 S2

59

Spatio-Spectral Concentration Theory

with

2 ˜ 2 ≈ ˜ kB(ω) − B(ω)k = kTE − TEk U U 2 C = N A(U) = (L + 1) A(U)

    1− C + log B(∂U) log(C) + o(log C) K() =  4π |{z} λi ≈1 [email protected]



  Project  Dynamic Graphics

University of Toronto

C 1− K() = + log B(∂U)  log(C) + o(log C)    4πC 1 −  + log B(∂U) log(C) + o(log C) K() =    4π |{z} 1 − C + log B(∂U) log(C) + o(log C) K() = λi ≈1 | {z }  4π     |{z} | {z } 1 −  C λi ≈0 λ ≈1 i + log B(∂U) log(C) +o(log C) K() = λi ∈[1,]  4π |{z} | {z } Spectrumλ(conjecture): i ≈1 D gi =λλ i gi i ∈[1,]     C 1− B(∂U) log(C) + o(log C) K() = + log | {z } 4π R  2 |{z} 2 | {z } g dω kgk λi ≈0 U U λ ≈1 i R λ= g ∈ H≤L λi ∈[1,], 2 = 2 g dω kgkS 2 S2

60

Spatio-Spectral Concentration Theory

with

2 ˜ 2 ≈ ˜ kB(ω) − B(ω)k = kTE − TEk U U 2 C = N A(U) = (L + 1) A(U)

    1− C + log B(∂U) log(C) + o(log C) K() =  4π |{z} λi ≈1 [email protected]



  Project  Dynamic Graphics

University of Toronto

C 1− K() = + log B(∂U)  log(C) + o(log C)    4πC 1 −  + log B(∂U) log(C) + o(log C) K() =    4π |{z} 1 − C + log B(∂U) log(C) + o(log C) K() = λi ≈1 | {z }  4π     |{z} | {z } 1 −  C λi ≈0 λ ≈1 i + log B(∂U) log(C) +o(log C) K() = λi ∈[1,]  4π |{z} | {z } Spectrumλ(conjecture): i ≈1 D gi =λλ i gi i ∈[1,]     C 1− B(∂U) log(C) + o(log C) K() = + log | {z } 4π R  2 |{z} 2 | {z } g dω kgk λi ≈0 U U λ ≈1 i R λ= g ∈ H≤L λi ∈[1,], 2 = 2 g dω kgkS 2 S2

61

Spatio-Spectral Concentration Theory

with

2 ˜ 2 ≈ ˜ kB(ω) − B(ω)k = kTE − TEk U U 2 C = N A(U) = (L + 1) A(U)

    1− C + log B(∂U) log(C) + o(log C) K() =  4π |{z} λi ≈1 [email protected]



  Project  Dynamic Graphics

University of Toronto

62

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

63

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50 Θ = 40

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

64

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50 Θ = 40 Θ = 30

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

65

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

66

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20 Θ = 10

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

67

Spatio-Spectral Concentration Theory L = 20 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20 Θ = 10 Θ=5

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

68

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

69

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50 Θ = 40

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

70

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50 Θ = 40 Θ = 30

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

71

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

72

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20 Θ = 10

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

73

Spatio-Spectral Concentration Theory L = 10 1 Θ = 50 Θ = 40 Θ = 30 Θ = 20 Θ = 10 Θ=5

0.9

Eigenvalue Magnitude

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10

1

10

2

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

Formulas

N X

2 ˜i (ω)} =

B(ω) − {ϕB(ω) , i = 1 ˜.b.i .kϕ Ni (ω)k2U U

74

i=K+1

Christian Lessig∗

Effective Dimension N = span (yL ) = H≤L span (ϕi )X i

l,m kϕ

June 23, 2010 (ω)k i

Error is minimizedi=K+1 if K X

˜bi ϕi , K  N  ˜ B(ω) ≈ B(ω) = ϕi (ω) | i = 1 . . . (L +i=1 1)2 , span (ϕi ) = H≤L



i

i = 1...N is approximated with{ϕi (ω)}for ,which N X

2 2 2 ˜ ˜

B(ω) − B(ω) = kϕ (ω)k b kϕi (ω)kU ,U i = K + 1i . . .iN U i=K+1

span (ϕi ) = span (yL ) = H≤L N X i

l,m

kϕi (ω)k i=K+1 ∗ [email protected]



[email protected]

Dynamic Graphics Project

˜

K X

˜

 University of Toronto

Formulas

N X

2 ˜i (ω)} =

B(ω) − {ϕB(ω) , i = 1 ˜.b.i .kϕ Ni (ω)k2U U

75

i=K+1

Christian Lessig∗

Effective Dimension N = span (yL ) = H≤L span (ϕi )X i

l,m kϕ

June 23, 2010 (ω)k i

Error is minimizedi=K+1 if K X

˜bi ϕi , K  N  ˜ B(ω) ≈ B(ω) = ϕi (ω) | i = 1 . . . (L +i=1 1)2 , span (ϕi ) = H≤L



i

i = 1...N is approximated with{ϕi (ω)}for ,which N X

2 2 2 ˜ ˜

B(ω) − B(ω) = kϕ (ω)k b kϕi (ω)kU ,U i = K + 1i . . .iN U i=K+1

=> Optimal basis functions Slepian functions. ) = span (yL ) = H≤L span (ϕare i N X i

l,m

kϕi (ω)k i=K+1 ∗ [email protected]



[email protected]

Dynamic Graphics Project

˜

K X

˜

 University of Toronto

Formulas

N X

2 ˜i (ω)} =

B(ω) − {ϕB(ω) , i = 1 ˜.b.i .kϕ Ni (ω)k2U U

76

i=K+1

Christian Lessig∗

Effective Dimension N = span (yL ) = H≤L span (ϕi )X i

l,m kϕ

June 23, 2010 (ω)k i

Error is minimizedi=K+1 if K X

˜bi ϕi , K  N  ˜ B(ω) ≈ B(ω) = ϕi (ω) | i = 1 . . . (L +i=1 1)2 , span (ϕi ) = H≤L



i

i = 1...N is approximated with{ϕi (ω)}for ,which N X

2 2 2 2 ˜ ˜

B(ω) − B(ω) = kϕ (ω)k b kϕi (ω)kU ,U i = K + 1i . . .iN U i=K+1

=> Optimal basis functions Slepian functions. ) = span (yL ) = H≤L span (ϕare  i



C 1− => Effective dimension is given by K(). = + log kϕi (ω)k 4π  i=K+1   ∗ [email protected] K X 1− C   [email protected] Dynamic Graphics Project University of Toronto + log K() ˜ = ˜ N X i

l,m

77

Effective Dimension







 B(∂U) log(C) + o(log C

C 1− K() = + log 4π      C 1− K() = + log B(∂U) log(C) + o(log C | {z 4π  |{z} | {z } λi ≈0 λi ≈1

λi ∈[1,]

D gi = λi gi [email protected]

Dynamic Graphics Project

University of Toronto

78

Applications • Transport Matrix compression. — Optimal cluster size. — Analytic basis functions for neighborhoods.

[email protected]

Dynamic Graphics Project

University of Toronto

79

Applications • Transport Matrix compression. — Optimal cluster size. — Analytic basis functions for neighborhoods. • Representation of signals localized on the sphere. — Compact representation with most of the advantages as Spherical Harmonics.

[email protected]

Dynamic Graphics Project

University of Toronto

80

Applications • Transport Matrix compression. — Optimal cluster size. — Analytic basis functions for neighborhoods. • Representation of signals localized on the sphere. — Compact representation with most of the advantages as Spherical Harmonics. • Exploitation of coherence of light transport in sampling-based algorithms.

[email protected]

Dynamic Graphics Project

University of Toronto

81

2

Future Work 





C 1− • Boundary function for K(). = + log B( 4π     1− C + log B( K() =  4π |{z} | {z λi ≈1

λi ∈[1

D gi = λi R

λ= [email protected]

Dynamic Graphics Project

2 2 g dω kgkU U R = 2 University of Torontog 2 dω kgk 2 S2

82

2

Future Work 





C 1− • Boundary function for K(). = + log B( 4π  • Effective dimension of light transport  for non  linear approximation schemes. C 1− + log B( K() =  4π |{z} | {z λi ≈1

λi ∈[1

D gi = λi R

λ= [email protected]

Dynamic Graphics Project

2 2 g dω kgkU U R = 2 University of Torontog 2 dω kgk 2 S2

83

2

Future Work 





C 1− • Boundary function for K(). = + log B( 4π  • Effective dimension of light transport  for non  linear approximation schemes. C 1− + log B( K() =  4π • Slepian functions for Riemannian manifolds. |{z} | {z λi ≈1

λi ∈[1

D gi = λi R

λ= [email protected]

Dynamic Graphics Project

2 2 g dω kgkU U R = 2 University of Torontog 2 dω kgk 2 S2

84

Conclusion • Characterization of effective dimension of light transport in a local neighborhood. — Improved estimate for dimensionality. — Closed form expression for basis functions.

[email protected]

Dynamic Graphics Project

University of Toronto

85

Conclusion • Characterization of effective dimension of light transport in a local neighborhood. — Improved estimate for dimensionality. — Closed form expression for basis functions. • Introduction of Slepian functions. — Efficient representation of localized signals. — Advantages of Spherical Harmonics.

[email protected]

Dynamic Graphics Project

University of Toronto

86

More information and source code: www.dgp.toronto.edu/people/lessig/effective-dimension/

[email protected]

Dynamic Graphics Project

University of Toronto

87

Effective Dimension Diffuse 0.5 Θ = 15° Θ = 20° Θ = 25° Θ = 30°

0.45

0.35 0.3 0.25 0.2 0.15

Eigenvalue magnitude

0.4

0.1 0.05 1

2

3

4

5

6

7

8

9

0

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

88

Effective Dimension Phong, s = 132 1 Θ = 5° Θ = 10° Θ = 15° Θ = 20°

0.9

0.7 0.6 0.5 0.4 0.3

Eigenvalue magnitude

0.8

0.2 0.1 0

10

1

10

2

0

10

Eigenvalue Index (Log) [email protected]

Dynamic Graphics Project

University of Toronto

89

Related Work • Coherence has been exploited in precomputed radiance transfer for some time.1 • Mahajan et al.2 studied the effective dimension in flatland and discussed extension to 3D. • Shading equation has been studied previously by Ramamoorthi and co-workers3 using assumptions similar to ours. Liu X, Sloan P, Shum H, Snyder J. All-Frequency Precomputed Radiance Transfer for Glossy Objects. In: Eurographics Symposium on Rendering 2004.; 2004.; Sloan P, Hall J, Hart J, Snyder J. Clustered Principal Components for Precomputed Radiance Transfer. In: SIGGRAPH '03: ACM SIGGRAPH 2003 Papers. New York, NY, USA: ACM Press; 2003:382-391. 2 Mahajan D, Shlizerman IK, Ramamoorthi R, Belhumeur P. A Theory of Locally Low Dimensional Light Transport. ACM Trans. Graph. 2007;26(3 (Proceedings of ACM SIGGRAPH 2007):1-9. 3 Ramamoorthi R, Hanrahan P. A Signal-Processing Framework for Inverse Rendering. International Conference on Computer Graphics and Interactive Techniques. 2001. Available at: http://portal.acm.org/citation.cfm?id=383271; Ramamoorthi R, Hanrahan P. A Signal-Processing Framework for Reflection. ACM Transactions on Graphics (TOG). 2004;23(4).; Ramamoorthi R, Koudelka M, Belhumeur P. A Fourier Theory for Cast Shadows. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005;27(2). 1

[email protected]

Dynamic Graphics Project

University of Toronto