On Tracking Portfolios with Certainty Equivalents on a Generalization ...

Report 2 Downloads 16 Views
On Tracking Portfolios with Certainty Equivalents on a Generalization of Markowitz Model: the Fool, the Wise and the Adaptive Richard Nock Brice Magdalou Eric Briys Frank Nielsen

CEREGMIA - UAG, Martinique CEREGMIA - UAG, Martinique CEREGMIA - UAG & Cyberlibris, France Sony Computer Science Labs, Inc., Japan

Comp. Sc. Economics Finance Comp. Sc.

ICML’ 2011

Outline Generalization of Markowitz’ Mean-Variance How do individuals make decision under risk: Expected Utility Model

On-line Learning in the Mean-Divergence Model

More results: http://www1.univ-ag.fr/~rnock/Articles/ICML11/ Nock & al., 1/20

Key ingredients Market: d assets

d-dimensional

Investor’s portfolio: α ∈ Pd

probability simplex

Returns: w ∈ [−1, +∞)d

ei,current = (1 + wi ) × ei,previous assume w ∼ pψ

parameter

.

Investor’s wealth: ωinv = w � α Nock & al., 2

Key problem How does the investor builds preferences over portfolios, i.e. how does he/she ranks α� over α,



α �α

Nock & al., 3

Simple approach

) k r o w t o n s e o (d

Decision making under Risk

Chavas, 2004

People’s will to invest proportional to expected reward ? Coin flipping game: toss a fair coin, win 2n € iff first head on n th toss Limit expected reward: Hence...



n≥1

n

n

2 (1/2 ) →n ∞

Nock & al., 4

Decision making under Risk

Chavas, 2004

People’s will to invest proportional to expected reward ? Coin flipping game: toss a fair coin, win 2n € iff first head on n th toss Limit expected reward:



n≥1

n

n

2 (1/2 ) →n ∞

Hence... people would be infinitely willing to participate...

r o t s e v n i : x o d a r a p g r u b s r e t e St. P ω [ inv ] p E ∼ ψ e w z i m i x a m t o n does e sc) I I I V X , i l l u o n r e B ( Nock & al., 5

Normative approach

Expected utility setting for ωinv Make five assumptions about the way the investor builds preferences among portfolios. For example ( ∀α, α� , α�� ∈ Pd ) A1: (α � α� ) ∨ (α ≺ α� ) ∨ (α ∼ α� )

(α � α ) ∧ (α � α ) ⇒ (α � α )

A2:





��

��

(α � α� ) ⇔ (∀β ∈ (0, 1), βα + (1 − β)α�� � βα� + (1 − β)α�� )

Order Transitivity Independence

Then, under assumptions A1-A5,

u inv )] ≤ Ew∼pψ [u(ω u inv� )], α � α� ⇔ Ew∼pψ [u(ω 4 4 9 1 , n r e t s n e g Mor for some utility function u & n n a m u e N von Nock & al., 6

Certainty equivalent & Risk premium Theorem: the expected utility, over all w , equals the utility of a single situation (e.g. Chavas, 2004)

Ew∼pψ [u(ωinv )] = u(Ew∼pψ [ωinv ] − p(α; θ)) � �� � c(α;θ)

Certainty equivalent

Numerous cases

Risk premium

“Single” case

Nock & al., 7

Expressions of u,p(α; θ),c(α; θ)?

Finding u... Arrow-Pratt coefficient of absolute risk aversion for stock i: 2

∂ ri (ωinv ) = − 2 u(ωinv ) ∂wi .



∂ u(ωinv ) ∂wi

�−1

le o r r o j a m a s y Rationale: pla ) θ ; α ( p g n i t a m in approxi

Lemma: assume ri (ωinv ) = a, ∀i = 1, 2, ..., d , for some a ∈ R ;

ute l o s b A t n a t s n Co ARA) C ( n o i s r e v A Risk

then u(x) =



x − exp(−ax)

iff a = 0 . otherwise

(hereafter, investor risk averse: a

> 0)

Nock & al., 8

Finding p(α; θ) and c(α; θ) ... Theorem: assume pψ = N(µ, Σ) ; then p(α; θ) =

a � ; 2 α Σα

odel m e c n a i r a V n a Me 52) 9 1 , z t i w o k r a (M



hence c(α; θ) = α µ −

a � ; 2 α Σα

investor cares for average return and variance of returns ... ... but assumption known not to hold in practice; approximation by mean-variance always valid in the neighborhood of the riskless case; otherwise, can be devastating... Chavas, 2004

Nock & al., 9

Generalization of Mean-Variance nce Mean-Diverge model

Theorem: assume pψ in exponential families





pψ (w : θ) = exp w� θ − ψ(θ) b(w) then p(α; θ) =

1 a Dψ

hence c(α; θ) =

1 a

(θ − aα�θ);

Bregman divergence with generator ψ (strictly convex diff.)

(ψ(θ) − ψ(θ − aα)) .

Nock & al., 10

Properties of the risk premium Convergence and monotonicity: lima→0 p(α; θ) = 0, limα→0 p(α; θ) = 0 ; p(α; θ) is strictly increasing in a. Toy upperbounds for particular cases: p(α; θ)



 � � � 1 � 1  dD �  kl a 1−exp(−a) aλ   1 1 − λ� λ� +a

if if if

pψ = d-dim. multinomial pψ = Poisson(λ) pψ = exponential(λ� )

latter bounds proportional to (square root of) variance.

Nock & al., 11

Consequence of generalization

Duality allocations / returns Pops out from dual coordinates in exponential families

Allocations

α

∇ψ

θ

∇ψ �

Returns

Ew∼pψ [w]

w

θ =“natural market allocation”, optimal (information-theory) When pψ = N(µ, Σ), optimal allocation ∝ Σ−1 µ Markowitz, 1952 Nock & al., 12

Tracking portfolios

Setting & algorithm Shifting portfolios: NMA θt , our portfolio αt reference portfolio rt , that we wish to track.

and a

Algorithm: initialize: α0 = (1/d)1 , learning parameter η > 0 , strictly convex differentiable φ ; Nock & Nielsen, 2009 repeat for t = 0, 1, ..., T − 1:

αt+1 ←

−1 ∇φ (∇φ

Premium gradient

(αt ) − η∇p (αt ; θt ) − zt 1) Computed from wt

So that αt+1

∈ Pd

Nock & al., 13

Property Lowerbound on the certainty equivalent there exists some risk-aversion parameter a such that: T −1 �

cψ (αt ; θt )

t=0

� � T� −1 1 1 ≥ �rt+1 − rt �p cψ (rt ; θt ) − d q ln α t=0 t=0 � � 1 1−α − ln d ln +|T|υ − T ς − η α(1 − α) T −1 �

Nock & al., 14

Property Lowerbound on the certainty equivalent there exists some risk-aversion parameter a such that: T −1 �

cψ (αt ; θt )

t=0



T −1 � t=0

cψ (rt ; θt ) − O(drift, sparsity of r. )

−O(T × max. scope of premium gradient)

Nock & al., 15

Experiments

Setting Four markets: DJIA, NYSE, TSE, S&P500, with daily or weekly returns, covering overall from 1962 to 2009. Tests with various values for a, η, ψ, φ + tests computing θt based on moving averages of returns (see paper + supplementary material)

Nock & al., 16

(some) Results for OMDkl,ψ

tur Cumulated re

nyse 100 80

returns

6

OMD (median) OMD (min) OMD (max) BEST UCRP

120

4

60 40

2

20

0

0

-2

-20

tse 35

OMD (median) OMD (min) OMD (max) BEST UCRP

14 12 10

returns

8

s&p500 25

8 6 4

5

0

300

400

500

OMD (median) OMD (min) OMD (max) BEST UCRP

14 12

140 120

0

100

200

300 T

400

500

600

0

60

OMD (median) OMD (min) OMD (max) BEST UCRP

10 8

6

returns

8

80

40

60 40

4

20

2

0

0

-20 0

100

200

300 T

400

500

0

1000 2000 3000 4000 5000 T

6 4

200 400 600 800 1000 1200 T OMD (median) OMD (min) OMD (max) BEST UCRP

50

100

returns

returns

1000 2000 3000 4000 5000 T OMD (median) OMD (min) OMD (max) BEST UCRP

160

10

is

0 0

T 16

Itakura-Saito

200

15 10

returns

m

100

20

2

-40 0

OMD (median) OMD (min) OMD (max) BEST UCRP

30

returns

OMD (median) OMD (min) OMD (max) BEST UCRP

10

returns

Markowitz

djia

ns

30 20

2

10

0

0 0

100

200

300 T

400

500

600

0

200 400 600 800 1000 1200 T

Nock & al., 17

(some) Results for OMDkl,ψ

s

emium r p d e t a l u m u C

djia Markowitz

100000

nyse 1e+06

OMD (median) OMD (min) OMD (max) BEST (median) UCRP (median)

10000 1000 100

100000 10000 1000

10000 1000 100

1000 100

10

1

1

1

0.1

0.1

0.1

0.01

0.01

0.01

0.01

0.001

0.001

0.001

0.001

0.0001

0.0001

0.1

0.0001 0

m

100

200

300

400

500

1e-05 0

T 1e+14

1e+16

OMD (median) OMD (min) OMD (max) BEST (median) UCRP (median)

1e+12 1e+10

OMD (median) OMD (min) OMD (max) BEST (median) UCRP (median)

1e+14 1e+12 1e+10

premiums

1e+08 1e+06 10000

1000 2000 3000 4000 5000 T

1e-05 0

100

1e+16

200

300 T

400

500

600

1e+14 1e+12 1e+10

1e+10 1e+08 1e+06 10000

10000

10000

100

100

100

100

1

1

1

1

0.01

0.01

0.01

0

100

200

300 T

400

500

0.01

0

1000 2000 3000 4000 5000 T

0.0001

200 400 600 800 1000 1200 T OMD (median) OMD (min) OMD (max) BEST (median) UCRP (median)

1e+12

1e+06

1e+06

0

1e+14

OMD (median) OMD (min) OMD (max) BEST (median) UCRP (median)

1e+08

1e+08

OMD (median) OMD (min) OMD (max) BEST (median) UCRP (median)

10000

10

1

premiums

100000

OMD (median) OMD (min) OMD (max) BEST (median) UCRP (median)

10

0.0001

Itakura-Saito

100000

tse

100

10

is

OMD (median) OMD (min) OMD (max) BEST (median) UCRP (median)

s&p500

0

100

200

300 T

400

500

600

0.0001

0

200 400 600 800 1000 1200 T

Nock & al., 18

(some) Results for OMDkl,is (a = 100.0, η = 0.01) 0.9

0.35

INTEL CORP.

0.8

PHILIP MORRIS

djia::

0.3

None: 16.01% INTEL CORP.: 7.91% (�) AT&T CORP.: 7.31% HP: 6.32% JP MORGAN: 4.94% PHILIP MORRIS: 4.35% HONEYWELL: 4.35%

0.7 0.25

0.6

0.2

0.5 0.4

0.15

0.3 0.1

0.2 0.1

0.05

0

0 0

6

100

200

300

400

500

PURE GOLD MINERALS INC.

0

1.4

100

200

300

400

500

INTL FOREST PROD. LTD.

1.2

5

None:: 17.33% (�) PURE GOLD MIN.: 9.70% BREAKWATER RES.: 8.27% REPAP ENT. INC.: 5.72% GENTRA INC.: 3.50% COTT CORP.: 3.34% MIRAMAR MIN.: 3.18%

1 4 0.8 3

0.6

2

0.4

1

0.2 0

0 0

200

400

600

800 1000 1200

tse:

0

200

400

600

800 1000 1200

Nock & al., 19

Conclusion Interesting questions: Lift CARA to other models of Absolute Risk Aversion Can we efficiently learn / track the investor’s risk aversion parameter a ? Transaction costs to be included

Nock & al., 20