ORGANIC SOLAR CONCENTRATORS

Report 5 Downloads 99 Views
ORGANIC SOLAR CONCENTRATORS

Tim Heidel Massachusetts Institute of Technology Department of Electrical Engineering & Computer Science [email protected] http://softsemi.mit.edu

OUTLINE • The need for higher efficiency solar cells • Conventional solar concentrators • Organic Solar Concentrators

(b)

RECENT GROWTH IN PHOTOVOLTAICS Feed‐in tariffs, production tax credits, renewable portfolio standards, and good old fashioned  research and development are working!

“2007 WORLD PV INDUSTRY REPORT HIGHLIGHTS: World solar photovoltaic (PV) market installations reached a record high of  2,826 megawatts (MW) in 2007, representing growth of 62% over the  2,826 megawatts (MW) in 2007, representing growth of 62% over the  previous year.  Germany's PV market reached 1,328 MW in 2007 and now accounts for 47%  of the world market. Spain soared by over 480% to 640 MW, while the United  of the world market. Spain soared by over 480% to 640 MW, while the United  States increased by 57% to 220 MW. It became the world's fourth largest  States increased by 57% to 220 MW. It became the world's fourth largest  market behind Japan, once the world leader, which declined 23% to 230 MW. World solar cell production reached a consolidated figure of 3,436 MW in  2007, up from 2,204 MW a year earlier.” 2007, up from 2,204 MW a year earlier.” Source: Solar Buzz 6.3MW (Germany, opened 2005)

Source: Sun Power

11 MW (Portugal, opened 2007) Source: Power Technology

Source: Prometheus Institute

20MW (Spain, opened 2007) Source: City Solar AG

COST OF ELECTRICITY WITH PHOTOVOLTAICS Levelized cost of electricity $/kWh

1MW system size 0.25

Deutsche Bank: Solar Photovoltaics, July 2007 0.20 0.15 0.10 0.05 0.00 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Year

Analysts are extrapolating trends to grid parity… But how we will achieve it?

HOW CAN WE INCREASE THE EFFICIENCY OF SOLAR CELLS? Build a tandem, or multijunction… EC Long wavelength 1.8 eV

Short wavelength

1.1 eV

EC

EV recombination  interface

High energy gap

EV

Low energy gap

(collects visible light) (collects near Infrared) Example: GaInP

Example: Si 

With additional junction, theoretical maximum increases from 30% to 42%. But there is a problem: large gap solar cells are very expensive (e.g. GaInP at > $10k/m2).

CONVENTIONAL SOLAR CONCENTRATORS Gather light by inexpensive ‘collector’, concentrate light on high performance solar cell. Fixed lens or mirror collector 

Tracking collectors

Conventional solar concentrators concentrate light up to 1000 times.  However, they are expensive and need tracking and/or cooling. 

COST MODEL OF SOLAR CONCENTRATORS collector cost 1 PV cost $ Wp = + efficiency × solar flux G efficiency × solar flux G >> 1 Geometric concentration factor (G ) =

area of collector area of solar cell

¾ Concentration factor (G) must be large ¾ Collector should be cheaper than conventional PV cell

AN ALTERNATIVE: THE LUMINESCENT SOLAR CONCENTRATOR solar radiation dye

air

glass

photoluminescence PV

PVair

• Passive system that doesn’t need to track the sun. • Smoothes out non‐uniform optical excitation. • Ability to concentrate diffuse light. • Tolerant of fabrication defects. W. H. Weber and J. Lambe, Applied Optics 15, 2299 (1976) A. Goetzberger, W. Greubel, Applied Physics 14, 123 (1977)

ORGANIC SOLAR CONCENTRATORS (OSCs) Currie, Mapel, Heidel, Goffri & Baldo, Science 321, 226 (2008)

Replace dye‐doped polymer with organic thin film on glass or plastic Allows better control over intermolecular interactions, especially energy transfer

Air Dyes

Solar cell

Glass

Near field energy transfer  couples molecules within  3‐5nm radius Increases energy difference  between absorbed and  emitted photons

SOME EXAMPLES OF LUMINESCENT SOLAR CONCENTRATION

Our lab proto‐types are 10x10x0.1cm. For characterization, we attach a Sunpower Si PV cell to one edge.

Solar cell 1

absorption, emission

‘MULTIJUNCTION’ ORGANIC SOLAR CONCENTRATORS abs.

emission Band gap 1

Solar cell 2

absorption, emission

Wavelength [λ] absorption

emission Band gap 2

Solar cell 3

absorption, emission

Wavelength [λ] absorption

emission Band gap 3

Wavelength [λ]

Solar cells pumped ~monochromatically at band edge…minimal heating.

APPLICATIONS: HIGH EFFICIENCY THIN FILM PV a) Tandem OSC‐PV:

Must achieve large concentration factor to reduce effective costs of PV cells.

OTHER APPLICATIONS: BUILDING INTEGRATED (WINDOWS & SKYLIGHTS) Better aesthetics (color tunability and image transmission). No need for transparent contacts. Can be fabricated on flexible plastic for easier installation. AUTOMOTIVE SUNROOFS (PV cells power AC and/or fan, reduce engine load on cold starts)

Polycarbonate sunroofs reduce center of mass (fewer  rollovers) Lighter weight increases MPG Aesthetic advantages (No visible electrodes)

EFFICIENCY GAINS WITH TANDEM OSC Power conversion Bottom cell efficiency

efficiency at

OSC

G = 3, 50

Tandem (2 layer) OSC

6.8%, 6.1%

Tandem OSC-CdTe PV

9.6%

11.9%, 11.1%

Tandem OSC-CIGS PV

13.1%

14.5%, 13.8%

Calculated,  based on lab  results

PROJECTED EFFICIENCY GAINS WITH OPTIMIZED OSC With concentrator Base Solar Cell

Initial efficiency

8%, G=250, GaInP

High efficiency Si

20%

22%

Average Si

14%

18%

CdTe

10%

15%

Baseline CdTe and CIGS cell performance is 9.6% and 13.1%, respectively. S. H. Demtsu, J. R. Sites, paper presented at the IEEE Photovoltaic Specialists Conf. 2005. J. Palm et al., Thin Solid Films 451-52, 544 (2004)

CONCLUSIONS • Separate the optical and electrical functions of solar cells • Use molecules  for large area light absorption function ‐‐ cheap, easy to fabricate • Use high performance semiconductors for electrical function  ‐‐ expensive, but concentrator reduces cost to (1/100th)

• Organic Solar Concentrators • Do not need to track the sun. • Smoothed out non‐uniform optical (solar) excitation. • Can concentrate diffuse light. • Tolerant of fabrication defects. • Unsolved issues • Quantum efficiency can still be doubled (100% is possible) • Broader spectral coverage will require new IR dyes.

Cost and efficiency roadmap US$0.10/W

100

US$0.20/W

US$0.50/W

Thermodynamic limit

Efficiency (%)

80 3G

60

US$1.00/W

40

?

Printed solar cells?

Single junction limit 20

US$3.50/W

2G 0

100

200

300

400

500

Cost (US$/m2) Martin Green UNSW

Best research‐cell efficiencies 36 32

Spectrolab Japan Energy

Crystalline Si Cells Single crystal Multicrystalline Thin Si

28

Efficiency (%)

Spectrolab

Multijunction Concentrators Three-junction (2-terminal, monolithic) Two-junction (2-terminal, monolithic)

NREL NREL

Thin Film Technologies Cu(In,Ga)Se2 CdTe Amorphous Si:H (stabilized)

24 20

Emerging PV Organic cells

Spire ARCO

Stanford

Georgia Tech

Varian

Kodak

Sharp

Georgia Tech

ARCO

8

Monosolar

Kodak Boeing

4 0 1975

RCA

Boeing

AstroPower

RCA

Solarex

NREL Cu(In,Ga)Se2 14x concentration

Boeing

NREL

AstroPower

Boeing

NREL

United Solar United Solar

Photon Energy

University California Berkeley University Konstanz

1985

NREL

NREL

Euro-CIS

University RCA of Maine RCA RCA RCA RCA

1980

UNSW

NREL

AMETEK Masushita

UNSW

NREL

University So. Florida Solarex

UNSW

UNSW

UNSW

No. Carolina State University Boeing

UNSW

Spire

Westinghouse

16 12

NREL/ Spectrolab

1990

1995

Princeton NREL

2000

Si  cutoff

GaInP cutoff

REALISTIC POTENTIAL EFFICIENCY OF A GaInP-Si TANDEM

35

33%

Efficiency [%]

30 25 20 15 10 5 0

400

500

600

700

800

900

1000 1100

Wavelength [nm] Si: VOC = 0.68V, FF=0.801 (e.g. Sunpower) GaInP: VOC = 1.4V, FF=0.8 But there is a problem: GaInP costs > $10,000/m2

CAN WE USE ORGANIC DYES IN SOLAR APPLICATIONS? EXAMPLE: PERYLENE DIIMIDE DYES Material Advantages 9 Abundant: 1,500,000 kg/yr; multiple suppliers 9 Non Toxic 9 Low cost: $50/kg    (if 0.2 g/m2 $0.01/m2) 9 Stable

O

O

R

R

O

O

‘Toreador red’

compare semiconductor grade silicon production: ~35,000,000 kg/yr (2005)

Reflection 

Light

+ ‐ Light absorption at dye

Reflection, Transmission losses

Emission

Photon Thermal loss conversion

Waveguided  transmission

Facial emission

Re‐ absoprtion

PV  conversion

Recombination losses

(i) Refractive index is hard to increase

1

0.8 0.7

Standard glass/plastic

Trapping efficiency

0.9

0.6 0.5 0.4 0.3 0.2 0.1 0

1

1.2 1.4 1.6 1.8

2

2.2 2.4 2.6 2.8

Refractive index Need n > 2.3 to get trapping efficiency > 90% No low cost solutions?

3

THE OPERATION OF LSCs 2. Transport losses

1. Confinement losses air

glass

air

Non‐zero overlap between absorption  and emission can lead to re‐absorption

Non waveguided emission Refractive index n = 1.5 n = 1.7 n = 2.1

Loss 25% 20% 12%

Feeds back in

Re‐absorption losses have limited LSCs to concentration factors of  100,000 hours in OLEDs [Mark Thompson, MRS Bulletin, 32, 694 (2007)] Our preliminary stability measurement in solar concentrators:  8% drop in 3 months of solar exposure

EFFICIENCY OF TANDEM WAVEGUIDES (photons in/photons out) at G=3

Rubrene: DCJTB Pt(TPBP)

GaInP

GaAs

Calculated power efficiency: 6.8%

Optical Quantum Efficiency

0.7 0.6 0.5 0.4 0.3 0.2

30% Rubrene, 1% DCJTB 2% DCJTB, 4% Pt(TPBP) Sum

0.1 0

400 450 500 550 600 650 700

Wavelength (nm)

EFFICIENCY OF SINGLE WAVEGUIDES (photons in/photons out) at G=3

Optical Quantum Efficiency

0.7 0.6

Calculated power efficiencies

0.5

DCJTB‐based OSC with GaInP: Rubrene‐based OSC with GaInP: Pt(TPBP)‐based OSC with GaAs:

0.4 0.3 0.2 0.1

30% Rubrene, 1% DCJTB 2% DCJTB, 4% Pt(TPBP) 2% DCJTB

0 400 450 500 550 600 650

Wavelength (nm) GaInP: C. Baur et al., Journal of Solar Energy Engineering-Transactions of the ASME 129, 258 (2007). GaAs: R. P. Gale et al., paper presented at the 21st IEEE Photovoltaic Specialists Conference, Kissimimee 1990

5.9% 5.5% 4.1%

EFFICIENCY AT HIGHER OPTICAL CONCENTRATIONS Previous maximum 1