parS

Report 0 Downloads 165 Views
Keeping it together: ! Organizing the bacterial chromosome for division! Ned Wingreen

Chase Broedersz

Princeton University!

Xindan Wang, Joseph Loparo, and David Rudner Harvard Medical School! Yigal Meir

Ben-Gurion University 1

Outline

• The problem of packaging and moving DNA

- Nucleoid Associated Proteins

- The ParABS system

• How does ParB condense DNA?

• Lattice model for the ParB-DNA complex

- Localizing the complex

- Roadblocks and loops

- Gene silencing

• Open questions

• Conclusions

2

Packaging DNA is a challenge

E. coli

Kavenoff and Bowen, Chromosome (1976) 3

Chromosomal organization: Nucleoid-associated proteins Bridging and looping

Bending and coiling

Luijsterburg et al. Journal of Structural Biology (2006)

4

ParABS system: Chromosome segregation in Caulobacter crescentus ParB

ParA

1 μm Ptacin et al. Nature Cell Biology (2010)! Shebelut et al. PNAS (2010) !

•How are ~1000 ParB proteins localized on the DNA?! •How do ParBs interact and what is the structure of the ParB-DNA complex?! •What controls formation of the complex?! !

5

ParB clusters around parS sites in Bacillus subtilis Roadblock suppresses spreading

20 kbp’s

Murray et al. Molecular Microbiology (2006)

Breier and Grossman, Molecular Microbiology (2007)

Rodionov et al. Science (1999) !

“spreading” model DNA ParB

parS 6

ParB clusters around parS sites in Bacillus subtilis ParB structure

20 kbp’s Sullivan et al. Cell, 137, 685-696 (2009)

Murray et al. Molecular Microbiology (2006)

Leonard et al. Molecular Microbiology (2004)

“spreading” model DNA ParB

parS 7

Lattice model for DNA-binding proteins

Protein

A

A

Searching for a minimal model for ParB B E C B E D

C & bridging Spreading D or bridging Spreading Spreading & bridging Spreading or bridging model Bridging interactions Bridging model Spreading or bridging Bridging interactions interactionsinteractions A Non-interacting dimers B Spreading interactions Cinteractions Bridginginteractions interactions

Non-interacting dimers Spreading interactions Non-interacting dimers Spreading interactions Dimer model Spreading model

D Spreading or bridging E

D

interactions D

0

10

Spreading or bridging Spreading or bridging Bridging interactions Bridging interactions interactions interactions

F 0

Dimer

10

Dimer

Bridging

Bridging

Spreading 10

Probability p(n)

C

Probability p(n)

C

Spreading & bridging interactions

Spreading

10

Spreading or bridging

Spreading or bridging

10

Spreading & bridging

10

Cluster size distribution

10

10

0

20

10

10

0

10

20

30

40

50

60

Cluster size

70

40

60

Cluster size

80

80

90

100

100

9

eading interactions

int

er

g o ac r br tio idg ns in g

Spreading & bridging model condenses DNA E Spreading & bridging interactions Spreading & Bridging model

A

0

10

Dimer Bridging Spreading

preading or bridging interactions Probability p(n)

10

Spreading or bridging Spreading & bridging

10

10

10

0

10

20

30

40

50

60

Cluster size

70

80

90

100

10

Can a single parS site localize the ParB-DNA complex? A

C parS 1 0.9

Probability

0.8 0.7

Spreading Bridging Spreading or bridging Spreading & bridging

0.6 0.5 0.4 0.3 0.2 0.1 0 0

100

200

300

400

500

Genomic position

Condensation is essential for localization 11

How strong a parS site is needed for localization? Entropic “cost” of localization

B

D parS 1 0.9 0.8

parS

Probability

0.7 0.6 0.5

parS strength 0 1 2 3 4 6

0.4 0.3 0.2 0.1 0 0

200

400

600

Genomic position

In a cell: Mc ~ 1000, N ~ 130,000

∆∊parS < -4.2 kT

800

1000

Roadblock experiment is captured by spreading & bridging model C

roadblock parS 1 0.9

Probability

0.8 0.7

Spreading Bridging Spreading or bridging Spreading & bridging

0.6 0.5 0.4 0.3 0.2 0.1 0 0

100

200

300

400

500

Genomic position

Why doesn’t cluster loop around roadblock?

Statistics of DNA looping

A Scaling of loop number

Universal loop-size distribution

0

10

−1

10

−2

Probability distr.

10

−3

10

−4

10

−5

10

−6

10

α  ≃  0.9

−7

10

0

10

1

2

10

10

3

10

Loop size

B

Projected cluster size

Genomic position

Prediction: ParB overexpression should overcome roadblock ParB cluster

roadblock

D

A

parS 1

0

10

ParB expression level

0.9 0.8

20 40 60 80 100 150 200 250 300

10

Probability

0.7 0.6

10

1

2

10

3

10

10

ParB expression level 0.5 0.4 0.3 0.2

B

0.1 0 0

100

200

300

400

500

600

700

800

900

Projected cluster size

1000

Genomic distance Genomic position

ParB silences genes flanking the parS site in P1 plasmids

Rodionov et al. Science (1999) !

Gene-silencing profiles are captured by the spreading & bridging model DNA exposure 0.9 0.8

DNA exposure DNA exposure

l

E E

1

increasing parS-distance

1

0.9 0.7 0.8 0.6 0.6 0.4 0.4

0.3 0.1 0 0 0.1

0

D D

50

DNA exposure DNA exposure DNA exposure

10

0 0

1010

10

10

tion/ParB expression level 0

0.5

1

sition/ParB expression level

400

450

100

150

300

350

400

450

1 4 6 10 1 1 30 4 4 60 6 6 90 10 10 3030 18060 60 9090 310 410180 180

10

310 310 410 410

1010 1010

1010

0 0

500

F F 5

-1

5

1

3

4

5

6

7

1

3

4

5

6

7

ParB (ng/ g protein)

Collapse of experimental data

0

10

0

10

-1

parS distance

10

0

1

10

10

10

0

0 1010

1

1 1010

1010

ParBexpression expressionlevel/(parS level/(parSdistance) distance) ParB

parS distance 10 10

3

10

ParB expression level/(parS distance)

1.5

0 0

500

ParB (ng/ g protein)

parSdistance distance parS

1010

1.5

350

parS distance

10

1

300

Collapse of numerical data

0

1010

0.5

150

ParB expression level

10

0

100

0.4

ParB expression level

0 0

500

Genomic position

50

Remaining activity Remaining activity

enomic position

0.8 1

0.6 0.4

0.5 0.3

500

increasing parS-distance

0.8 0.6

0.7 0.5

0

1

Remaining activity Remaining activity

C C

Gene activity

0

1

10

10

ParB/(parS distance) 3

3 10 10

10

0

10

1

10

ParB/(parS distance)

17

• Why is parS

required for cluster formation?

Open questions

• How is ParB partitioned between parS sites?

Ptacin et al. Nature Cell Biology (2010)

Sullivan et al. Cell (2009)

18

Localization and condensation of the partitioning protein ParB on the bacterial chromosome

Conclusions

• Bacterial chromosomes/plasmids are organized by DNA-binding proteins

• A minimal “spreading & bridging” model for ParB accounts for:

- Stability and localization of ParB-DNA complexes at parS sites

- Roadblock experiments & Gene silencing

ParB expression level

0.6

50 100

E

1

0.9 0.8

300 400

0.4

1

Remaining activity

0.8

Probability

C

1

DNA exposure

A

0.7 0.6 0.5 0.4 0.3

0.8 0.6 0.4

0.1

0

0 0

500

50

100

150

Genomic position

B

1

0

10

D

0.6 0.4

0.6

10

1

2

10

10

ParB expression level 0.5 0.4

450

0 0

3

4

5

6

7

F

0

parS distance 1 4 6 10 30 60 90

5

180

10

parS distance 10

310 410

0.1

0

1

ParB (ng/ g protein)

0.2

0

0 0

500

10

0.3

!

20 40 60 80 100 150 200 250 300

10

3

10

10

DNA exposure

10

0.7

Probability

Probability

!

0.8

400

0 ParB expression level

0.9

0.8

350

ParB expression level

parS

1

300

Remaining activity

0

0.5 200

1 400

600 1.5

10 800 10

0

1

3

• Open questions

- Mechanism of nucleation at parS sites?

- Partitioning of ParB (role of DNA supercoiling?) 1000

100

300

500

Genomic distance

700

Genomic position/ParB expression level

900

1000

10

10

10

10

ParB expression level/(parS distance)

10

10

0

10

1

10

ParB/(parS distance)

Acknowledgements!

Funding!

Chase Broedersz (Princeton University)!

!

Joseph Loparo, Xindan Wang, and David Rudner (Harvard)! Yigal Meir (Ben Gurion)

19

Number of parS motifs ranges from 1 in B. burgdorferii to 24 in S. coelicolor

ParB2 (Spo0J2) can bind DNA both specifically and nonspecifically

Lin and Grossman, Cell (1998)! Jakimowicz et al., Molecular Microbiology (2002)! Breier and Grossman, Molecular Microbiology (2007) 20