Part Two

Report 1 Downloads 210 Views
Copyrighted material - Taylor & Francis

Main formulae for Part 2 Electrical principles and technology

A.c. theory

   2 2 2  i 1 +i 2 +i 3 + · · · + i n I = n

1 1 T = or f = f T

2 Im or 0.637Im π 1 I = √ Im or 0.707Im 2 r.m.s maximum Form factor = Peak factor = average r.m.s

D.c. transients C−R circuit

τ = CR

Charging:

v C = V (1 − e−(t /CR) ) vr = V e−(t /CR) i = I e−(t /CR)

Discharging:

v C = v R = V e−(t /CR) i = I e−(t /CR) L τ= R

Part 2

For a sine wave: I AV =

General sinusoidal voltage: v = Vm sin(ωt ± φ)

1 X L = 2πfL XC = 2πfC V  2 2 Z = = (R + X ) I

Q=

VL V

differential voltage gain dB common mode gain −R f Vo = Inverter: A= Vi Ri Rf Vo Non-inverter: A= =1+ Vi Ri

V1 V2 V3 Summing: Vo = −R f + + R1 R2 R3 1 Vi dt Integrator: Vo = − CR

Rf Differential If V1 > V2 : Vo = (V1 − V2 ) − R1 If V2 > V1 :



Rf R3 Vo = (V2 − V1 ) 1+ R2 + R3 R1

or 

L C

Three-phase systems

VRC L RD = L CR 2π fr L IC Q= = R Ir

Ir =

√ Star: I L = I p VL = 3V p √ Delta: VL = V p I L = 3I p √ P = 3VL I L cos φ or P = 3I p2 R p

P = VI cos φ or

Two-wattmeter method P = P1 + P2

S = VI

Q = VI sin φ

i = I (1 − e−(Rt /L) )

CMRR = 20 log10

Parallel resonance (LR–C circuit):  1 1 R2 fr = − 2 2π LC L

I2R

v R = V (1 − e−(Rt /L) )

Operational amplifiers

1 √ 2π LC

VC 2π fr L 1 1 = = = V R 2π f r CR R fr Q= or f2 − f1 fr ( f2 − f 1) = Q

Current growth: v L = Ve−(Rt /L)

Current decay: v L = v R = V e−(Rt /L) i = I e−(Rt /L)

Single-phase circuits

Series resonance: fr =

L−R circuit

power factor = cos φ =

R Z

√ (P1 − P2 ) tan φ = 3 (P1 + P2 )

Copyrighted material - Taylor & Francis Main formulae for Part 2

V1 N1 I2 = = V2 N2 I1

I0 =



2 + I2) (I M C

I M = I0 sin φ0

IC = I0 cos φ0

E2 − E1 E = 4.44 f m N Regulation = × 100% E2 2 V1 Equivalent circuit: Re = R1 + R2 V2 2 V1 Xe = X1 + X2 V2 Z e = (Re2 + X e2 ) losses Efficiency, η = 1 − input power Output power = V2 I2 cos φ2 Total loss = copper loss + iron loss Input power =output power +losses 2 N1 Resistance matching: R1 = RL N2

D.c. machines General e.m.f. E =

2 pn Z ∝ ω c

(c = 2 for wave winding, c =2 p for lap winding)

Generator: E = V + Ia Ra

VI Efficiency, η = × 100% VI + Ia2 Ra + I f V + C E = V − I a Ra

Motor:

Efficiency, η =

VI − Ia2 Ra − I f V − C VI

Torque =

× 100%

pZIa EIa = ∝ Ia  2πn πc

Three-phase induction motors f ns = s= p



n s − nr ns



× 100

fr = s f

Xr = s X2

N2 s E1 I 2 R2 Er N1 s= r Ir = = Zr P2 [R22 + (s X 2 )2 ] Efficiency, η =

Pm Pl

input – stator loss – rotor copper loss – friction and windage loss = input power  

s E 12 R2 m(N2 /N1 )2 Torque, T = 2πn s R22 + (s X 2 )2 ∝

s E 12 R2 R22 + (s X 2 )2

These formulae are available for download at the website: www.routledge.com/cw/bird

Part 2

Transformers

341