Perturbations of Roots under Linear Transformations of Polynomials

Report 4 Downloads 80 Views
Perturbations of Roots under Linear Transformations of Polynomials ´ urgus Branko C Western Washington University Bellingham, WA, USA February 19, 2006

1

Circles in a Circle 1923 Oil on canvas 38 7/8 x 37 5/8 inches (98.7 x 95.6 cm)

Wassily Kandinsky Russian, worked in Germany and France lived 1866 - 1944

Philadelphia Museum of Art: The Louise and Walter Arensberg Collection

• Q. I. Rahman, G. Schmeisser: Analytic theory of polynomials. Oxford University Press, 2002.

• T. Sheil-Small: Complex polynomials. Cambridge University Press, 2002.

• M. Marden: Geometry of polynomials. Second edition, American Mathematical Society, 1966.

2

This is joint research with Vania Mascioni. • On the location of critical points of polynomials. Proc. Amer. Math. Soc. 131 (2003), 253–264. • A contraction of the Lucas polygon. Proc. Amer. Math. Soc. 132 (2004), 2973–2981. • Roots and polynomials as homeomorphic spaces. Expositiones Mathematicae 24 (2006), 81–95. ◦ Results of this talk are from a paper accepted in Constructive Approximation. 3

We study polynomials with complex coefficients aj : p(z) = a0 + a1 z + . . . + an z n

We study polynomials with complex coefficients aj : p(z) = a0 + a1 z + . . . + an z n

Pn =

n

all polynomials of degree ≤ n

o

4

p ∈ Pn

n

o

Z(p) = w ∈ C : p(w) = 0

p ∈ Pn

n

o

Z(p) = w ∈ C : p(w) = 0

n

L(Pn) = all linear operators on Pn

o

p ∈ Pn

n

o

Z(p) = w ∈ C : p(w) = 0

n

L(Pn) = all linear operators on Pn

o

Vladimir Tulovsky: On perturbations of roots of polynomials. J. Analyse Math. 54 (1990), 77–89. 5

Let T ∈ L(Pn). Z(p) = Z(T p) for all non-constant p ∈ Pn

if and only if

T

?

Let T ∈ L(Pn). Z(p) = Z(T p) for all non-constant p ∈ Pn

if and only if

T = αI,

α ∈ C \ {0}

6

Let T ∈ L(Pn).

Z(p) ∩ Z(T p) 6= ∅

for all non-constant p ∈ Pn

if and only if

T

?

Let T ∈ L(Pn).

Z(p) ∩ Z(T p) 6= ∅

for all non-constant p ∈ Pn

if and only if

T = αI,

α ∈ C \ {0}

7

15

10

5

0

-15

-10

-5

0

5

10

n

o

Let T ∈ L(Pn) and D(r) = z ∈ C : |z| ≤ r . ∃ CT > 0 such that 



Z(p) + D(CT ) ∩ Z(T p) 6= ∅ for all non-constant p ∈ Pn if and only if

T

?

8

15

10

5

0

-15

-10

-5

0

5

10

What is a simple example of such an operator?

What is a simple example of such an operator?

(Sαp)(z) = p(α + z)

What is a simple example of such an operator?

(Sαp)(z) = p(α + z)

Z(Sα p) = {−α} + Z(p).

What is a simple example of such an operator?

(Sαp)(z) = p(α + z)

Z(Sα p) = {−α} + Z(p).

α 0 αn (n) (Sαp)(z) = p(z) + p (z) + · · · + p (z) 1! n!

What is a simple example of such an operator?

(Sαp)(z) = p(α + z)

Z(Sα p) = {−α} + Z(p).

α 0 αn (n) (Sαp)(z) = p(z) + p (z) + · · · + p (z) 1! n! α αn n Sα = I + D + · · · + D 1! n!

9

n

o

Let T ∈ L(Pn) and D(r) = z ∈ C : |z| ≤ r . ∃ CT > 0 such that 



Z(p) + D(CT ) ∩ Z(T p) 6= ∅ for all non-constant p ∈ Pn if and only if

n

o

Let T ∈ L(Pn) and D(r) = z ∈ C : |z| ≤ r . ∃ CT > 0 such that 



Z(p) + D(CT ) ∩ Z(T p) 6= ∅ for all non-constant p ∈ Pn if and only if

T = α0 I + α1 D + · · · + αn D n ,

α0 6= 0

10

More than





Z(p) + D(CT ) ∩ Z(T p) 6= ∅

is true.

More than





Z(p) + D(CT ) ∩ Z(T p) 6= ∅

T = α0 I + α1 D + · · · + αn D n ,

is true.

α0 6= 0.

More than





Z(p) + D(CT ) ∩ Z(T p) 6= ∅

T = α0 I + α1 D + · · · + αn D n , Let φn(z) = z n.

is true.

α0 6= 0.

More than





Z(p) + D(CT ) ∩ Z(T p) 6= ∅

T = α0 I + α1 D + · · · + αn D n , Let φn(z) = z n. n

o

Let KT = max |u| : u ∈ Z(T φn) .

is true.

α0 6= 0.

More than





Z(p) + D(CT ) ∩ Z(T p) 6= ∅

T = α0 I + α1 D + · · · + αn D n ,

is true.

α0 6= 0.

Let φn(z) = z n. n

o

Let KT = max |u| : u ∈ Z(T φn) .

Then

Z(T p) ⊂ Z(p) + D(KT )

for all non-constant p ∈ Pn.

11

Let U and V be finite subsets of C. The Hausdorff distance is defined by: n

o

dH (U, V ) = min r > 0 : V ⊂ U + D(r), U ⊂ V + D(r) .

Let U and V be finite subsets of C. The Hausdorff distance is defined by: n

o

dH (U, V ) = min r > 0 : V ⊂ U + D(r), U ⊂ V + D(r) . Let T = α0 I + α1 D + · · · + αn Dn,

α0 6= 0.

Let U and V be finite subsets of C. The Hausdorff distance is defined by: n

o

dH (U, V ) = min r > 0 : V ⊂ U + D(r), U ⊂ V + D(r) . Let T = α0 I + α1 D + · · · + αn Dn,

α0 6= 0.

Then 



n

dH Z(p), Z(T p) ≤ max KT , KT −1

o

for all non-constant p ∈ Pn.

12

Let m ∈ N. Let Πm be the set of all permutations of {1, . . . , m}.

Let m ∈ N. Let Πm be the set of all permutations of {1, . . . , m}. Let U = {u1 , . . . , um } and V = {v1 , . . . , vm } be multisets of m complex numbers.

Let m ∈ N. Let Πm be the set of all permutations of {1, . . . , m}. Let U = {u1 , . . . , um } and V = {v1 , . . . , vm } be multisets of m complex numbers.

The Fr´ echet distance is defined by: dF (U, V ) := min

σ∈Πm

max uk − vσ(k) . 1≤k≤m

13

15

10

5

0

-15

-10

-5

0

5

10

Let

T = α0 I + α1 D + · · · + αn D n ,

α0 6= 0.

Let γ1, . . . , γn be the roots of α0 z n + α1 z n−1 + · · · + αn−1 z + αn counted according to their multiplicities.

Let

T = α0 I + α1 D + · · · + αn D n ,

α0 6= 0.

Let γ1, . . . , γn be the roots of α0 z n + α1 z n−1 + · · · + αn−1 z + αn counted according to their multiplicities. Then 



  2 dF Z(p), Z(T p) ≤ n |γ1| + · · · + |γn|

for all non-constant p ∈ Pn.

14

4

2

0

-2

-4 -3

-2

-1

0

1

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

20

10

0

-10

-20

0

5

10

15

Let p ∈ Pn be a polynomial with n distinct roots. Then Z(p) ∩ Z(p0) = ∅. Define τ (p) = min |w − v| : w ∈ Z(p), v ∈ Z(p0) n

o

Let p ∈ Pn be a polynomial with n distinct roots. Then Z(p) ∩ Z(p0) = ∅. Define τ (p) = min |w − v| : w ∈ Z(p), v ∈ Z(p0) n

1 X c(p) = w n w∈Z(p)

o

Let p ∈ Pn be a polynomial with n distinct roots. Then Z(p) ∩ Z(p0) = ∅. Define τ (p) = min |w − v| : w ∈ Z(p), v ∈ Z(p0) n

1 X c(p) = w n w∈Z(p) n

ρ(p) = max |w − c(p)| : w ∈ Z(p)

o

o

Let p ∈ Pn be a polynomial with n distinct roots. Then Z(p) ∩ Z(p0) = ∅. Define τ (p) = min |w − v| : w ∈ Z(p), v ∈ Z(p0) n

o

1 X c(p) = w n w∈Z(p) n

ρ(p) = max |w − c(p)| : w ∈ Z(p)

spr(p) = τ (p)

τ (p) ρ(p)

o

!n−2

15

A trivial example: Let r > 0. p(z) = z n − rn,

p0(z) = nz n−1

A trivial example: Let r > 0. p(z) = z n − rn,

p0(z) = nz n−1

Z(p) ⊂ {w ∈ C : |w| = r},

Z(p0) = {0}

A trivial example: Let r > 0. p(z) = z n − rn,

p0(z) = nz n−1

Z(p) ⊂ {w ∈ C : |w| = r},

Z(p0) = {0}

τ (p) = r,

c(p) = 0,

ρ(p) = r

A trivial example: Let r > 0. p(z) = z n − rn,

p0(z) = nz n−1

Z(p) ⊂ {w ∈ C : |w| = r},

Z(p0) = {0}

τ (p) = r,

c(p) = 0,

spr(p) = r

 n−2 r

r

ρ(p) = r

=r

16

A generalization:

Let t > 0.

Define Ht ∈ L(Pn) by (Ht p)(z) = p(z/t),

p ∈ Pn .

A generalization:

Let t > 0.

Define Ht ∈ L(Pn) by (Ht p)(z) = p(z/t),

p ∈ Pn .

Then spr(Ht p) = t spr(p).

17

αn n α2 2 D + ··· + D . Recall Sα = I + αD + 2! n!

αn n α2 2 D + ··· + D . Recall Sα = I + αD + 2! n! Let

T = I + αD + α2 D2 + · · · + αn Dn.

αn n α2 2 D + ··· + D . Recall Sα = I + αD + 2! n! Let

T = I + αD + α2 D2 + · · · + αn Dn.

Then there exists a constant ΓT > 0 such that dF



ΓT Z(Sα p), Z(T p) ≤ spr(p) 

for all p ∈ Pn with n distinct roots.

18

α2 2 αn n Recall Sα = I + αD + D + ··· + D . 2! n! Let

T = I + αD + α2 D2 + · · · + αn Dn.

α2 2 αn n Recall Sα = I + αD + D + ··· + D . 2! n! Let

T = I + αD + α2 D2 + · · · + αn Dn.

A corollary:

α2 2 αn n Recall Sα = I + αD + D + ··· + D . 2! n! Let

T = I + αD + α2 D2 + · · · + αn Dn.

A corollary: For an arbitrary p ∈ Pn with n distinct roots: 



lim dF Z(Sα Ht p), Z(T Ht p) = 0

t→+∞

19