Physics 1307 Practice Quiz 4 Chapter 7 KE =KE 1

Report 45 Downloads 268 Views
Physics 1307  Practice Quiz 4 Chapter 7 Problem I : A two­body collision with a spring A block of mass  m1 =1.60Kg  initially moving to the right with a speed of 4.00 m/s on a frictionless, horizontal  track collides with a spring attached to a second block of mass  m2 =2.10Kg initially moving to the left with a  speed of 2.50 m/s. The spring constant is 600 N/m.  (a) Find the velocities of the two blocks after the collision.  (b) Determine the maximum distance that the spring was compressed during the collision. Problem II: Collision at an intersection A 1550 kg car traveling east with a speed of 25 m/s collides at an intersection with a 2500 kg SUV traveling north  at a speed of 20 m/s. Find the direction and magnitude of the velocity of the wreckage after the collision, assuming  the vehicles stick together after the collision. SOLUTIONS Problem solving strategy Momentum conservation and collisions 1. Be sure no significant external force acts on your chosen system. That is, the forces that act between the  interacting bodies must be the only significant ones if momentum is to be used. [ Note: If this valid for a  portion of the problem, you can use momentum conservation for that portion only.]  2. Draw a diagram of the initial and final situation, just before the interaction (collision) takes place, and  represent the momentum of each object with an arrow and label. Do the same for the final situation, just  after the interaction. 3. Choose a coordinate system and “+” and “­” direction. (For a head­on collision, you will need only and x­ axis.) It is often convenient to chose the + x­axis in the direction of one object's initial velocity.  4. Write momentum conservation equation(s): total initial momentum = total final momentum. You have one equation for each component.  5. If the collision is elastic, you can also write down a conservation of kinetic energy equation:

KE i=KE f

Alternatively you can use the equation deduced in class. 6. Solve algebraically for the unknown quantity (ies).

1

Problem I (a) First, a graph of the  situation before and after the collision: V2=­2.5 m/s

V1= 4 m/s

k

V1'

m2

m1

V2'

m2

mm1 1

+ We need to realize first that the collision is elastic (Why? The energy stored in the spring during the collision is  returned as kinetic energy) . Thus we can use the equations given in class:

v1 ' =

m1−m2 v 12 m2 v 2 m1m2

1.60kg−2.10kg 4.0 =

m s

2 −2.5

v2 ' =

m1m 2

s

 2.10 kg =−3.4

1.60 kg2.10 kg

similarly for the second velocity:

m 2−m1 v 22 m1 v 1

m

 2.10kg−1.60Kg −2.5 =

m s

2 4.0

m s

1.60 kg

1.60 kg2.10 kg

we can observe  how the  relative velocity 

v 1−v 2 =4

m s

−−2.5

m s

=6.5

m s

switches direction after the collision,

v 1 ' −v 2 ' =−3.4

m s

−3.1

m s

=−6.5

m s

(b) Since the surface is frictionless the total mechanical energy is conserved then,

2

m   s

=3.1

m s

E i=E f KE i=EP f 1

1 1 m1 v12 m 2 v 22= k  x 2 2 2 2 1 N 19.3 J = 600  x 2 2 m 0.25m= x Problem II We start with a picture of the collision:

y(N) vf 

V2'=25 m/s

x(E)

m2=1500 kg

V1'=20 m/s

m1=2500 kg Let us use conservation of linear momentum along each component: x­component p ix = p fx 1500 kg 25

m s

y­component p iy= p fy

=1500 kg2500 kg v fx v fx=9.4

2500 kg 20

m

m s

=1500 kg2500 kg v fy v fy =12.5

s

m s

Now to find magnitude and direction we just have to remember the definitions of these two quantities: 2

2

v f = 9.4 12.5 m/ s=15.6



m s

 and  =arctan

12.5 9.4 3

=53.1o