Plasmonics, Metamaterials and Their Applications in ...

Report 7 Downloads 58 Views
Plasmonics, Metamaterials and Their Applications in Light Manipulations Zhaowei Liu

Electrical & Computer Engineering (ECE) Material Science Engineering (MSE) Center for Magnetic Recording Research (CMRR)

University of California, San Diego (UCSD) Zhaowei Liu Research Group

Light Manipulation

Nanoscale

Nanolithography Energy harvesting Bioimaging & sensing LEDs and detectors High resolution High speed High sensitivity High efficiency Nanophotonics Plasmonics Nano-materials Light matter interactions

Zhaowei Liu Research Group

Optical Materials 

(a)

  0,   0

  0,   0

Fe, Co…

  0,   0

y Strong Anisotropic Media

Most materials

Ag, Au…

Negative Index Media

(b)



x

  0,   0

New materials properties provide new possibilities !

Zhaowei Liu Research Group

Optical Imaging Systems Telescope

Eye

Microscope

3D imaging system

Zhaowei Liu Research Group

Optical Microscope

1590’s

1900’s

1998

Zhaowei Liu Research Group

The Foundations of Optical Microscopy The light illumination

August Köhler (1866 - 1948)

The material -- glass

The theoretical limit

Otto Schott (1851 - 1935)

Ernst Abbe (1840 - 1905)

The diffraction limit

Zhaowei Liu Research Group

What is Diffraction Limit E ( x, y, z )  E0eik x x e

image

k z  (n

z

 c

ik y y

eik z z

) 2  (k x 2  k y 2 )

Propagating waves

x

• kx2+ky2(nω/c)2  kz is imaginary Amplitude exponentially decay evanescent waves small features of the object

Evanescent waves are lost at the image plane

Diffraction limited resolution

Zhaowei Liu Research Group

Methods to Improve Resolution x   / n sin( )

Reduce working λ

Increase n

Light

Air

•EUV •X-ray • Electron beam • Ion beam

• Oil immersion (1.0-1.8) • Solid immersion (n=1.5~2)

Zhaowei Liu Research Group

Perfect Lens Theory A slab of negative refractive index material (NRIM) can perform as a perfect lens air n0=1 0

n=1

air n0=1



Snell’s law

sin   1 sin  0 n=1

Propagating waves

Object plane

n=-1

John Pendry Imperial College

n=-1

n=1

image plane

Fresnel equation

Tp ( k x , d ) 

t01t12 exp(ik z1d )  r01r12 exp(ik z1d )

Evanescent waves Phys. Rev. Lett. 85, 3966-3969 (2000). Zhaowei Liu Research Group

What are Metamaterials? A metamaterial (or meta material) is a material which gains its properties from its structure rather than directly from its composition.

Nature Materials

1nm

Unit: atoms

Metamaterials

10 nm -100 m

Unit: Meta “atoms” Artificial nanostructures Zhaowei Liu Research Group

Metamaterials at MW

NIM, UCSD, Science, 2001

Boeing, bulk NIMs

High n, KAIST, Nature, 2011 Zhaowei Liu Research Group

Metamaterials: from MW to Optical Optical Metamaterials – More bulky and less lossy

0  xx 0    0  yy 0   0 0  zz   FOM: order of magnitude improvement  Fabrication: order of magnitude easier

Practical Optical Metamaterials: Plasmonic metamaterials  μ=1

Science, Dec. 2010

Zhaowei Liu Research Group

Superlens Imaging Using Metal

40nm Ag film @3.48eV Simulated resolution 0, εz′ < 0) Δx = 310 nm

C. Ma and Z. Liu, Opt. Express 18, 4838 (2010)

Metamaterial 3 um

0.77 um

~ λ/9

3.0 um

Metamaterial (εx′ > 0, εz′ > 0)

kx

~ λ/10 Δx = -120 nm

Zhaowei Liu Research Group

Metalenses To introduce precise phase modulation by introducing a plasmonic waveguide array (i)

(iii) Metal

(ii)

(iv)

Elliptic Dispersive Metamaterial FWHM = 52 nm ~ λ/6

FWHM = 59 nm ~ λ/6

Hyperbolic Dispersive Metamaterial Metamaterial (a) Air

(d)

(c)

(b)

Air

2.2 μm

1.9 μm

Metamaterial

Metamaterial 3.6 μm

117 nm

C. Ma and Z. Liu, APL 96, 183103 (2010),

2.8 μm

210 nm

C. Ma, and Z. Liu, J. Nanophotonics, 5, 051604 (2011)

Zhaowei Liu Research Group

GRIN Metalens x A'

A

1 P

2 O'

O

z

C Focus

B

Converging region

B'

Diverging region ε

22

εz′

12

εx′

2 -5

0

(μm)

5x

2.8 μm 1.4

7.2 μm

Metamaterial

Air Metamaterial

~λ/5

284 nm

165 nm

C. Ma, M. Escobar, and Z. Liu, Phys. Rev. B 84, 195142 (2011)

Zhaowei Liu Research Group

An Intriguing Hyperbolic Metalens (a)

(c)

Fm

Janus God

Fd

Fm

 x'  0,  z'  0

Air

Metamaterial

(c) (d)

Janus Lens

Fd Fd

Air

 x'  0,  z'  0

Metamaterial

C. Ma, and Z. Liu, Opt. Express 20 , 2581 (2012)

Zhaowei Liu Research Group

Fm

Conventional Lens  Metalens (Comparison for imaging characteristics) For conventional optical lens Object Location ∞ > so > 2f so = 2f f < so < 2f so = f so < f

Type Real Real Real Virtual

Location f< si < 2f si = 2f ∞ > si > 2f ±∞ |si|> so

Image Orientation Inverted Inverted Inverted Erect

Type Real Virtual Virtual Virtual Real

Location 0 < vm < fm 2fd < vd < fd vd = 2fd -∞ < vd < 2fd ±∞ ∞ > vd > 0

Relative size Minified Same size Magnified Magnified

1 1 1   so si f

3, 1205 (2012)

For Hyperbolic Metalens Object Location ∞ > vd > 0 ∞ > vm > 2fm vm = 2fm fm < vm < 2fm vm = fm vm < fm

Imaging equation

Image Orientation Erect Inverted Inverted Inverted Erect

Relative size Minified Minified Same size Magnified Magnified

1 z / x z / x   vd vm fm '

'

'

'

1/ vd  ( z' /  x' ) / vm  1/ f d

Subscription d and m means the location in either dielectrics or metamaterials

Metalens enables exotic imaging systems that previously thought impossible A review article in Nature Communications, 3, 1205 (2012) Zhaowei Liu Research Group

Object in Air Real image always formed! b

a Object

Object

Image

Fd Air

Image Fd

Fm Metamaterial

Fm

( x'  0,  z'  0) Air

Metamaterial

Conventional optical lens

f

f

Zhaowei Liu Research Group

Compound kinoform plasmonic lenses

Opt. Commun.291, 390 (2013) Zhaowei Liu Research Group

Structured illumination Microscopy (SIM) • Resolution improved twice in fluorescent microscopy

without

with

Spatial Light Modulator (SLM)

44

M. G. L. Gustafsson, J. Microsc. 198, 82 (1999)

Zhaowei Liu Research Group

Structured Illumination Microscopy Object (a)

Illumination (b)

(a)

(c)

(b)

(c)

k Detection

Image

Illumination

k

Image Info Zhaowei Liu Research Group

SIMPSIM Light interference  Surface plasmon wave interference (better resolution) ω

Photon ω=ck

metal

10μm

ω2 Surface Plasmon

ω1

1μm

λ=365nm ksp1

ksp2

λ=514nm

kx

SIM

Nano Lett. 2005, Nano Lett. 2009

PSIM kobs klight

ksp

Zhaowei Liu Research Group

Resolution Issue Conventional OM

x 

Conventional SIM

x 

Plasmonic SIM (PSIM)

x 

emi

1X

2 NA

emi 2 NA  2 NAemi / abs emi 2 NA  2 NAeff

>2X

>3X

The NAeff is only determined by the plasmonic structure NOT the objective For instance, NA of the objective is 0.5 NAeff of the plasmonic structure can be 1.5

Zhaowei Research Group CurrentLiu work (2): PSIM

Plasmonic Structured Illumination Microscopy mirror

lens

lens

DMD

OM

High speed light modulator

Laser lens

prism

SIM glass NA

θ

Plasmonic Structures

metal object

PSIM lens

objective

CCD Resolution: >3X resolution enhancement (50-100nm) Speed: >30 frames/second (faster than real movie speed) Zhaowei Research Group CurrentLiu work (2): PSIM

PSIM: example design (1) PSIM excitation wavelengths: 442nm PSIM detection wavelength: 508nm Detection NA: 0.85

Resolution: ~80nm Enhancement factor: ~3.8 F. Wei, and Z. Liu, Nano. Lett. 10, 2531 (2010)

Zhaowei Research Group CurrentLiu work (2): PSIM

Super Resolution Lithography

Zhaowei Liu Research Group

Surface Plasmon Interference Nanolithography (SPIN) 3μm

~60nm

Ex Ez λ=365nm

E

10μm Metal: Al Working λ: 266nm Simulation

λ=514nm Z. Liu, et al, Nano. Lett. 9, 462 (2009) Z. Liu, et al, Nano. Lett. 5, 957 (2005)

Zhaowei Liu Research Group

FSL for Lithography

Zhaowei Liu Research Group

For 2D Periodic Lithography

(a) 2D transfer function for a 12 pairs of 35 nm Ag and 21 nm SiO2 multilayer at a wavelength of 405 nm. (b) The simulated |E| field at the plane 3 nm after the multilayer.

Zhaowei Liu Research Group

Hyperlens for Lithography

54

Zhaowei Liu Research Group

Hyperlens for Lithography

A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm

55

Zhaowei Liu Research Group

Plasmonic Super Contrast Imaging Dark-filed Microscopy

Zhaowei Liu Research Group

Dark-Field Microscopy (a)

(b)

Can NOT be used for imaging

Zhaowei Liu Research Group

Plasmonic Dark-Field (PDF) Microscopy

Zhaowei Liu Research Group

Preliminary Imaging Results on PS Beads (a)

Conventional dark field image

Conventional dark field image

(b)

PDF image

Plasmonic dark field image H. Hu, et al. Appl. Phys. Lett. 96, 113107 (2010)

Zhaowei Liu Research Group

OLED Based Plasmonic Dark Field Microscopy

Opt. Lett. 2012

Zhaowei Liu Research Group

Experimental Results

Zhaowei Liu Research Group

LED Based PDF

Zhaowei Liu Research Group

Plasmonic Super Contrast Imaging Phase Contrast Microscopy

Zhaowei Liu Research Group

Phase Contrast Microscopy •



Current methods: – Convert phase information, via optical path differences, into intensity variation. Problem: – Not practical for very thin samples or very fine features

Differential Interference Contrast Microscope Phase Contrast Microscope

Phase Contrast Microscopy

Can the same be done with plasmonics? Simpler? Better? Zhaowei Liu Research Group

Plasmonic Metamaterial Waveguide

Nano. Lett. 10, 1 (2010), collbrated with O. G. Schmidt group at IFW Dresden, Germany Zhaowei Liu Research Group

Plasmonic Metamaterial Waveguide

Nano. Lett. 10, 1 (2010), collbrated with O. G. Schmidt group at IFW Dresden, Germany

Zhaowei Liu Research Group

Special Properties

Zhaowei Liu Research Group

Light Plasmonic Metamaterial Interactions

Optical plasmonic metamaterials

Fluorescence molecules Semiconductor QW, WD …

Optical Pump

Quantum Efficiency (intensity) Plasmonic Enhancement

Life-time (speed) Fluorescence ~ns Plasmonics ~10-100fs

Electrical Pump

Zhaowei Liu Research Group

Plasmonic Enhanced PL

Nature Materials (2004)

• Near field coupling between LED and SPs on metal film • Surface structure convert SPs into free space photons Zhaowei Liu Research Group

Plasmonic Enhancement

APL, 2005; Nat. Mat. 2004; Adv. Mat. 2008; IEEE 2009

SP resonance  Light emission peak w/o metal w/ Ag

Zhaowei Liu Research Group

Hyperbolic Metamaterial Enhanced PL 

= 2 ns

z y x

 = 1.1 ns

[Science 336, 205 (2012)]

[APB 100,215 (2010)]

Jacob, Shalaev, Menon, Noginov [OL 35,1863 (2010)]

Zhaowei Liu Research Group

Hyperbolic Metamaterials + Light Emitters

Zhaowei Liu Research Group

Continue

Zhaowei Liu Research Group

Structured Hyperbolic Metamaterials

Couple non-radiative SPs to propagating photons! Zhaowei Liu Research Group

Metamaterial Enhanced Fluorescence

20nm Manuscript submitted Zhaowei Liu Research Group

Experiment: Emission Speed Enhancement (a)

200nm 270nm

80nm

10

Ag

glass 200nm

80nm

270nm

Ag 30nm Al2O3 30nm

glass (c)

200nm

80nm

300nm

glass

Ag 10nm Si 10nm

10

10

10

10

R6G mixed in PMMA

Al2O3

Ag

Si

t=3.8ns

4

t=0.4ns Counts

(b)

10

(d)

5

3

2

t=0.1ns

~50X Enhancement AgSi Ag/SiML stacks AgAO Ag/Al2ML O3 stacks Single Ag SL Ag layer R6G in in methanol methanol R6G

1

t=0.07ns

0

5

6

7

8

9

10

11

Time (ns) To appear in Nature Nanotechnology

Zhaowei Liu Research Group

12

Experiment: Brightness Enhancement

To appear in Nature Nanotechnology

Zhaowei Liu Research Group

Major Other Research Topics • • • •

Quantum plasmonics and Thermoelectronics Ultrafast LEDs and communications 3D real time brain imaging Nonlinear plasmonics

Zhaowei Liu Research Group

Summary • Passive light propagation control  super resolution microscopy  super contrast microscopy  plasmonic/metamaterial waveguides

• Active light emission control  Plasmonic/metamaterial LEDs

What nature can do ??

Zhaowei Liu Research Group

Acknowledgements Group members: Dr. Changbao Ma (previous) Dr. Wenwei Zheng Dr. Bahar Khademhosseinieh Dr. Dominic Lepage Feifei Wei Dylan Lu Justin Park (previous) Lorenzo Ferrari Weiwei Wan (pre) Dae Yup Han Hao Shen Eric Huang Joseph Ponsetto Bryan Van Saders Qian Ma Haoliang Qian Werner Jiang

Collaborators: Prof. Shaya Fainman (UCSD) Prof. Eric Fullerton (UCSD) Prof. Xiang Zhang (Berkeley) Prof. Yu-Hwa Lo (UCSD)

Prof. Deli Wang (UCSD) Prof. Sungho Jin (UCSD) Prof. Renkun Chen (UCSD) Kok Wai Cheah (Hong Kong Baptist Univ.)

Zhaowei Liu Research Group