Plasmonics, Metamaterials and Their Applications in Light Manipulations Zhaowei Liu
Electrical & Computer Engineering (ECE) Material Science Engineering (MSE) Center for Magnetic Recording Research (CMRR)
University of California, San Diego (UCSD) Zhaowei Liu Research Group
Light Manipulation
Nanoscale
Nanolithography Energy harvesting Bioimaging & sensing LEDs and detectors High resolution High speed High sensitivity High efficiency Nanophotonics Plasmonics Nano-materials Light matter interactions
Zhaowei Liu Research Group
Optical Materials
(a)
0, 0
0, 0
Fe, Co…
0, 0
y Strong Anisotropic Media
Most materials
Ag, Au…
Negative Index Media
(b)
x
0, 0
New materials properties provide new possibilities !
Zhaowei Liu Research Group
Optical Imaging Systems Telescope
Eye
Microscope
3D imaging system
Zhaowei Liu Research Group
Optical Microscope
1590’s
1900’s
1998
Zhaowei Liu Research Group
The Foundations of Optical Microscopy The light illumination
August Köhler (1866 - 1948)
The material -- glass
The theoretical limit
Otto Schott (1851 - 1935)
Ernst Abbe (1840 - 1905)
The diffraction limit
Zhaowei Liu Research Group
What is Diffraction Limit E ( x, y, z ) E0eik x x e
image
k z (n
z
c
ik y y
eik z z
) 2 (k x 2 k y 2 )
Propagating waves
x
• kx2+ky2(nω/c)2 kz is imaginary Amplitude exponentially decay evanescent waves small features of the object
Evanescent waves are lost at the image plane
Diffraction limited resolution
Zhaowei Liu Research Group
Methods to Improve Resolution x / n sin( )
Reduce working λ
Increase n
Light
Air
•EUV •X-ray • Electron beam • Ion beam
• Oil immersion (1.0-1.8) • Solid immersion (n=1.5~2)
Zhaowei Liu Research Group
Perfect Lens Theory A slab of negative refractive index material (NRIM) can perform as a perfect lens air n0=1 0
n=1
air n0=1
Snell’s law
sin 1 sin 0 n=1
Propagating waves
Object plane
n=-1
John Pendry Imperial College
n=-1
n=1
image plane
Fresnel equation
Tp ( k x , d )
t01t12 exp(ik z1d ) r01r12 exp(ik z1d )
Evanescent waves Phys. Rev. Lett. 85, 3966-3969 (2000). Zhaowei Liu Research Group
What are Metamaterials? A metamaterial (or meta material) is a material which gains its properties from its structure rather than directly from its composition.
Nature Materials
1nm
Unit: atoms
Metamaterials
10 nm -100 m
Unit: Meta “atoms” Artificial nanostructures Zhaowei Liu Research Group
Metamaterials at MW
NIM, UCSD, Science, 2001
Boeing, bulk NIMs
High n, KAIST, Nature, 2011 Zhaowei Liu Research Group
Metamaterials: from MW to Optical Optical Metamaterials – More bulky and less lossy
0 xx 0 0 yy 0 0 0 zz FOM: order of magnitude improvement Fabrication: order of magnitude easier
Practical Optical Metamaterials: Plasmonic metamaterials μ=1
Science, Dec. 2010
Zhaowei Liu Research Group
Superlens Imaging Using Metal
40nm Ag film @3.48eV Simulated resolution 0, εz′ < 0) Δx = 310 nm
C. Ma and Z. Liu, Opt. Express 18, 4838 (2010)
Metamaterial 3 um
0.77 um
~ λ/9
3.0 um
Metamaterial (εx′ > 0, εz′ > 0)
kx
~ λ/10 Δx = -120 nm
Zhaowei Liu Research Group
Metalenses To introduce precise phase modulation by introducing a plasmonic waveguide array (i)
(iii) Metal
(ii)
(iv)
Elliptic Dispersive Metamaterial FWHM = 52 nm ~ λ/6
FWHM = 59 nm ~ λ/6
Hyperbolic Dispersive Metamaterial Metamaterial (a) Air
(d)
(c)
(b)
Air
2.2 μm
1.9 μm
Metamaterial
Metamaterial 3.6 μm
117 nm
C. Ma and Z. Liu, APL 96, 183103 (2010),
2.8 μm
210 nm
C. Ma, and Z. Liu, J. Nanophotonics, 5, 051604 (2011)
Zhaowei Liu Research Group
GRIN Metalens x A'
A
1 P
2 O'
O
z
C Focus
B
Converging region
B'
Diverging region ε
22
εz′
12
εx′
2 -5
0
(μm)
5x
2.8 μm 1.4
7.2 μm
Metamaterial
Air Metamaterial
~λ/5
284 nm
165 nm
C. Ma, M. Escobar, and Z. Liu, Phys. Rev. B 84, 195142 (2011)
Zhaowei Liu Research Group
An Intriguing Hyperbolic Metalens (a)
(c)
Fm
Janus God
Fd
Fm
x' 0, z' 0
Air
Metamaterial
(c) (d)
Janus Lens
Fd Fd
Air
x' 0, z' 0
Metamaterial
C. Ma, and Z. Liu, Opt. Express 20 , 2581 (2012)
Zhaowei Liu Research Group
Fm
Conventional Lens Metalens (Comparison for imaging characteristics) For conventional optical lens Object Location ∞ > so > 2f so = 2f f < so < 2f so = f so < f
Type Real Real Real Virtual
Location f< si < 2f si = 2f ∞ > si > 2f ±∞ |si|> so
Image Orientation Inverted Inverted Inverted Erect
Type Real Virtual Virtual Virtual Real
Location 0 < vm < fm 2fd < vd < fd vd = 2fd -∞ < vd < 2fd ±∞ ∞ > vd > 0
Relative size Minified Same size Magnified Magnified
1 1 1 so si f
3, 1205 (2012)
For Hyperbolic Metalens Object Location ∞ > vd > 0 ∞ > vm > 2fm vm = 2fm fm < vm < 2fm vm = fm vm < fm
Imaging equation
Image Orientation Erect Inverted Inverted Inverted Erect
Relative size Minified Minified Same size Magnified Magnified
1 z / x z / x vd vm fm '
'
'
'
1/ vd ( z' / x' ) / vm 1/ f d
Subscription d and m means the location in either dielectrics or metamaterials
Metalens enables exotic imaging systems that previously thought impossible A review article in Nature Communications, 3, 1205 (2012) Zhaowei Liu Research Group
Object in Air Real image always formed! b
a Object
Object
Image
Fd Air
Image Fd
Fm Metamaterial
Fm
( x' 0, z' 0) Air
Metamaterial
Conventional optical lens
f
f
Zhaowei Liu Research Group
Compound kinoform plasmonic lenses
Opt. Commun.291, 390 (2013) Zhaowei Liu Research Group
Structured illumination Microscopy (SIM) • Resolution improved twice in fluorescent microscopy
without
with
Spatial Light Modulator (SLM)
44
M. G. L. Gustafsson, J. Microsc. 198, 82 (1999)
Zhaowei Liu Research Group
Structured Illumination Microscopy Object (a)
Illumination (b)
(a)
(c)
(b)
(c)
k Detection
Image
Illumination
k
Image Info Zhaowei Liu Research Group
SIMPSIM Light interference Surface plasmon wave interference (better resolution) ω
Photon ω=ck
metal
10μm
ω2 Surface Plasmon
ω1
1μm
λ=365nm ksp1
ksp2
λ=514nm
kx
SIM
Nano Lett. 2005, Nano Lett. 2009
PSIM kobs klight
ksp
Zhaowei Liu Research Group
Resolution Issue Conventional OM
x
Conventional SIM
x
Plasmonic SIM (PSIM)
x
emi
1X
2 NA
emi 2 NA 2 NAemi / abs emi 2 NA 2 NAeff
>2X
>3X
The NAeff is only determined by the plasmonic structure NOT the objective For instance, NA of the objective is 0.5 NAeff of the plasmonic structure can be 1.5
Zhaowei Research Group CurrentLiu work (2): PSIM
Plasmonic Structured Illumination Microscopy mirror
lens
lens
DMD
OM
High speed light modulator
Laser lens
prism
SIM glass NA
θ
Plasmonic Structures
metal object
PSIM lens
objective
CCD Resolution: >3X resolution enhancement (50-100nm) Speed: >30 frames/second (faster than real movie speed) Zhaowei Research Group CurrentLiu work (2): PSIM
PSIM: example design (1) PSIM excitation wavelengths: 442nm PSIM detection wavelength: 508nm Detection NA: 0.85
Resolution: ~80nm Enhancement factor: ~3.8 F. Wei, and Z. Liu, Nano. Lett. 10, 2531 (2010)
Zhaowei Research Group CurrentLiu work (2): PSIM
Super Resolution Lithography
Zhaowei Liu Research Group
Surface Plasmon Interference Nanolithography (SPIN) 3μm
~60nm
Ex Ez λ=365nm
E
10μm Metal: Al Working λ: 266nm Simulation
λ=514nm Z. Liu, et al, Nano. Lett. 9, 462 (2009) Z. Liu, et al, Nano. Lett. 5, 957 (2005)
Zhaowei Liu Research Group
FSL for Lithography
Zhaowei Liu Research Group
For 2D Periodic Lithography
(a) 2D transfer function for a 12 pairs of 35 nm Ag and 21 nm SiO2 multilayer at a wavelength of 405 nm. (b) The simulated |E| field at the plane 3 nm after the multilayer.
Zhaowei Liu Research Group
Hyperlens for Lithography
54
Zhaowei Liu Research Group
Hyperlens for Lithography
A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm
55
Zhaowei Liu Research Group
Plasmonic Super Contrast Imaging Dark-filed Microscopy
Zhaowei Liu Research Group
Dark-Field Microscopy (a)
(b)
Can NOT be used for imaging
Zhaowei Liu Research Group
Plasmonic Dark-Field (PDF) Microscopy
Zhaowei Liu Research Group
Preliminary Imaging Results on PS Beads (a)
Conventional dark field image
Conventional dark field image
(b)
PDF image
Plasmonic dark field image H. Hu, et al. Appl. Phys. Lett. 96, 113107 (2010)
Zhaowei Liu Research Group
OLED Based Plasmonic Dark Field Microscopy
Opt. Lett. 2012
Zhaowei Liu Research Group
Experimental Results
Zhaowei Liu Research Group
LED Based PDF
Zhaowei Liu Research Group
Plasmonic Super Contrast Imaging Phase Contrast Microscopy
Zhaowei Liu Research Group
Phase Contrast Microscopy •
•
Current methods: – Convert phase information, via optical path differences, into intensity variation. Problem: – Not practical for very thin samples or very fine features
Differential Interference Contrast Microscope Phase Contrast Microscope
Phase Contrast Microscopy
Can the same be done with plasmonics? Simpler? Better? Zhaowei Liu Research Group
Plasmonic Metamaterial Waveguide
Nano. Lett. 10, 1 (2010), collbrated with O. G. Schmidt group at IFW Dresden, Germany Zhaowei Liu Research Group
Plasmonic Metamaterial Waveguide
Nano. Lett. 10, 1 (2010), collbrated with O. G. Schmidt group at IFW Dresden, Germany
Zhaowei Liu Research Group
Special Properties
Zhaowei Liu Research Group
Light Plasmonic Metamaterial Interactions
Optical plasmonic metamaterials
Fluorescence molecules Semiconductor QW, WD …
Optical Pump
Quantum Efficiency (intensity) Plasmonic Enhancement
Life-time (speed) Fluorescence ~ns Plasmonics ~10-100fs
Electrical Pump
Zhaowei Liu Research Group
Plasmonic Enhanced PL
Nature Materials (2004)
• Near field coupling between LED and SPs on metal film • Surface structure convert SPs into free space photons Zhaowei Liu Research Group
Plasmonic Enhancement
APL, 2005; Nat. Mat. 2004; Adv. Mat. 2008; IEEE 2009
SP resonance Light emission peak w/o metal w/ Ag
Zhaowei Liu Research Group
Hyperbolic Metamaterial Enhanced PL
= 2 ns
z y x
= 1.1 ns
[Science 336, 205 (2012)]
[APB 100,215 (2010)]
Jacob, Shalaev, Menon, Noginov [OL 35,1863 (2010)]
Zhaowei Liu Research Group
Hyperbolic Metamaterials + Light Emitters
Zhaowei Liu Research Group
Continue
Zhaowei Liu Research Group
Structured Hyperbolic Metamaterials
Couple non-radiative SPs to propagating photons! Zhaowei Liu Research Group
Metamaterial Enhanced Fluorescence
20nm Manuscript submitted Zhaowei Liu Research Group
Experiment: Emission Speed Enhancement (a)
200nm 270nm
80nm
10
Ag
glass 200nm
80nm
270nm
Ag 30nm Al2O3 30nm
glass (c)
200nm
80nm
300nm
glass
Ag 10nm Si 10nm
10
10
10
10
R6G mixed in PMMA
Al2O3
Ag
Si
t=3.8ns
4
t=0.4ns Counts
(b)
10
(d)
5
3
2
t=0.1ns
~50X Enhancement AgSi Ag/SiML stacks AgAO Ag/Al2ML O3 stacks Single Ag SL Ag layer R6G in in methanol methanol R6G
1
t=0.07ns
0
5
6
7
8
9
10
11
Time (ns) To appear in Nature Nanotechnology
Zhaowei Liu Research Group
12
Experiment: Brightness Enhancement
To appear in Nature Nanotechnology
Zhaowei Liu Research Group
Major Other Research Topics • • • •
Quantum plasmonics and Thermoelectronics Ultrafast LEDs and communications 3D real time brain imaging Nonlinear plasmonics
Zhaowei Liu Research Group
Summary • Passive light propagation control super resolution microscopy super contrast microscopy plasmonic/metamaterial waveguides
• Active light emission control Plasmonic/metamaterial LEDs
What nature can do ??
Zhaowei Liu Research Group
Acknowledgements Group members: Dr. Changbao Ma (previous) Dr. Wenwei Zheng Dr. Bahar Khademhosseinieh Dr. Dominic Lepage Feifei Wei Dylan Lu Justin Park (previous) Lorenzo Ferrari Weiwei Wan (pre) Dae Yup Han Hao Shen Eric Huang Joseph Ponsetto Bryan Van Saders Qian Ma Haoliang Qian Werner Jiang
Collaborators: Prof. Shaya Fainman (UCSD) Prof. Eric Fullerton (UCSD) Prof. Xiang Zhang (Berkeley) Prof. Yu-Hwa Lo (UCSD)
Prof. Deli Wang (UCSD) Prof. Sungho Jin (UCSD) Prof. Renkun Chen (UCSD) Kok Wai Cheah (Hong Kong Baptist Univ.)
Zhaowei Liu Research Group