Supplementary Information: : Popcorn-Derived Porous Carbon for Energy Storage and CO2 Capture Ting Liang,†,‡ Chunlin Chen,*,† Xing Li,‡ Jian Zhang*,† †
Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences,
1219 Zhongguan West Road, Ningbo 315201, China. ‡
Faculty of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua
Road, Ningbo 315211, China. *Correspondence to:
[email protected],
[email protected] G
PC PC-0.5K PC-1K PC-2K
Intensity (a.u.)
D
1000
1500
2000
2500 -1
Ramanshift (cm ) Figure S1. Raman spectra.
Figure S2. SEM images of PC and PC-1K.
3000
Figure S3. EIS analysis.
5
PC-2K
PC-0.5K
-1
CO2 Capture capacity (mmol g )
PC-1K 4
3
2
1
0 0.0
0.5
1.0 3
1.5
-1
Vmicro (cm g ) Biomass-derived carbons: this work cellulose rice husk palm shell
fruit bunch fish scales starch eucalyptus sawdust sugar bagasse corncob almond shell bean dreg chitosan
Typical carbon materials: polyethylenimine polyacrylonitrile polyacrylonitrile fibers polypyrrole commercial AC lysine/ resorcinol/ formaldehyde acetonitrile furfuryl alcohol
Figure S4. The comparison of CO2 capture capacity for various carbon materials with different pore volume of micropores (details shown in Table S3).
PC PC-0.5K PC-1K PC-2K
6
-1
Quantity adsorbed (mmol g )
7
5 4 3 2 1 0 0
200
400
600
800
1000
Absolute pressure (mbar)
Figure S5. CO2 uptake isotherms at 0 oC, 0~1066 mbar.
Table S1. Structural properties of as-obtained materials. SSAtotal SSAmicro Vtotal Vmicro mesopore micropore N%c ID/IG Samples sizea sizeb m2 g-1 m2 g-1 cm3 cm3 nm nm at% -1 -1 g g PC 39 36 0.014 0.013 57.3 NA 2.47 0.913 PC-0.5K 867 794 0.406 0.370 2.59 0.570 1.62 0.927 PC-1K 1248 1124 0.588 0.520 2.66 0.597 1.27 0.929 PC-2K 1489 1280 0.706 0.590 2.88 0.610 0.88 0.929 a: average size by BJH method. b: average size by H-K method. c: measured by the XPS.
Table S2. Comparison of the gravimetric capacitances for sample PC-1K with previous reported carbon materials derived from biomass in three-electrode system in aqueous KOH solution. Precursor Morphology SSA Electrolyte Cs I/m a Ref. 2 -1 -1 -1 m g Fg Ag Popcorn
1248
6 M KOH
245
0.5
This work
655
6 M KOH
202
0.5
1
3332
30 wt% KOH
238 b
0.37
2
2007
6 M KOH
210
1
3
2273
7 M KOH
168 b
0.05
4
849
6 M KOH
264
0.25
5
2157
7 M KOH
185 b
0.05
6
30 wt% KOH 1 M H2SO4 0.5 M H2SO4
311 b
0.25
7
300 b
0.25
8
153
NA
9
1306
6 M KOH
340
1
10
Tea-leaves
2841
2 M KOH
330
1
11
Bamboo
1472
6 M KOH
301
0.1
12
Chitosan
2435
6 M KOH
291.8
2 mVs-1
13
Corn husk
867
6 M KOH
356
1
14
Glucose
2633
6 M KOH
257
0.5
15
1510
30 wt% KOH
194 b
0.37
16
Pomelo peel
2725
6 M KOH
342
0.2
17
Yogurt
1300
1 M H2SO4
225 b
2
18
50 n nm m
Broad bean shells Cationic starch Coconut shell
NA
Fish scale Human hair
NA
Pig bone Sunflower seed shell Sugar cane Cassava peel Human hair
Starch
NA
2509
NA
1788 1352
NA
Natural cotton Cotton shirts Seaweed Silk fibroin
NA
˂10
1 M Na2SO4
14 b
0.216
19
NA
1 M Na2SO4
70
2mVs-1
20
270
1 M H2SO4
198 b
2mVs-1
21
3075
1M (C2H5)4NBF
52 b
1 mA cm-2
22
4
Auriculari ae Waste air-laid paper Oil palm kernel Shell Cotton stalk
80
6 M KOH
196
5 mVs-1
23
1098
6 M KOH
252
0.5
24
462
1 M KOH
210
0.5
25
1M Et4NBF4 0.5 M H2SO4 0.5 M H2SO4
114 b
0.5
26
1481
Fir wood
NA
1064
Pistachio shell
NA
1096
180 120
10 mVs-1 10 mVs-1
27 27
Banana fibers
1097
1 M Na2SO4
74
0.5
28
Shrimp shell
726
6 M KOH
175
0.5
29
a: current density; b: two-electrode system; NA: not available.
Table S3. The comparison of CO2 adsorption capacity for PC-xK samples with the previous reported biomass-derived carbons and typical carbon materials at nearly atmospheric pressure. Materials/precursor SSA Vtotal Vmicro Temp. CO2 Ref. 2 -1 3 -1 3 -1 o m g cm g cm g C uptake mmol g-1 PC-0.5K 867 0.41 0.37 25 4.60 This PC-1K 1248 0.59 0.52 25 4.55 work PC-2K 1489 0.71 0.59 25 4.32 Fruit bunch 2511 1.05 0.55 25 3.71 30 a Fish scales 3206 2.29 0.76 25 3.89 31 b Sucrose 740 0.88 NA 25 1.62 32 Ethylenediamine/carbon 587 0.91 NA 25 2.11b 32 tetrachloride Starch 2190 1.01 0.92 25 3.50 33 Cellulose 2370 1.08 0.96 25 3.50 33 Eucalyptus sawdust 1260 0.62 0.55 25 4.80 33 Olive stones 909 NA NA 30 2.50 34 Sugar bagasse 923 0.53 0.526 30 1.75 35 Rice husk 927 0.56 0.539 30 1.30 35 Glucose 15.43 0.037 NA 25 4.10 36 Corncob 2789 1.55 1.37 28 3.56 37 Almond shell 1090 0.50 0.42 25 3.01 38 Palm shell 889 0.474 0.442 30 1.67 39 Bean dreg 1060 0.52 0.44 25 4.24 40 Sodium alginate 1740 1.57 NA 25 4.57 41 Chitosan 1381 0.57 0.56 25 3.86 42 Polyethylenimine 1540 0.75 0.52 25 3.60a 43 Polyacrylonitrile 2100 1.01 0.93 25 4.48a 44 Resorcinol/ 1979 1.068 NA 25 4.30 45 formaldehyde Pyrrole/GO 1360 0.59 NA 25 4.30a 46 polyacrylonitrile fibers 2231 1.16 0.76 25 4.40 47 Polypyrrole 1700 0.88 0.74 25 3.90 48 Low-sulfur petroleum 1745 NA NA 25 4.07a 49 coke Commercial AC 2546 1.47 1.12 25 3.75 50 Lysine/ resorcinol/ 467 0.23 0.21 25 3.13 51 formaldehyde Acetonitrile 3360 1.71 1.24 25 4.38a 52 a Furfuryl alcohol 3698 1.88 1.14 25 3.83 52 Melamine/ 261 0.91 NA 25 2.25 53 formaldehyde
Furfuryl alcohol 2559 1.40 NA 25 4.00 54 a Titanium carbide 1832 0.84 NA 25 4.10 55 a: CO2 adsorption capacity at 1 bar. b: CO2 adsorption capacity at 120 KPa. NA: not available.
References: (1) Xu, G. Y.; Han, J. P.; Ding, B.; Nie, P.; Pan, J.; Dou, H.; Li, H. S.; Zhang, X. G. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 2015, 17, 1668-1674. (2) Wang, H. Q.; Zhong, Y. L.; Li, Q. Y.; Yang, J. H.; Dai, Q. F. Cationic starch as a precursor to prepare porous activated carbon for application in supercapacitor electrodes. J. Phys. Chem. Solids 2008, 69, 2420-2425. (3) Sun, L.; Tian, C. G.; Li, M. T.; Meng, X. Y.; Wang, L.; Wang, R. H.; Yin, J.; Fu, H. G. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 2013, 1, 6462-6470. (4) Chen, W. X.; Zhang, H.; Huang, Y. Q.; Wang, W. K. A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J. Mater. Chem. 2010, 20, 4773-4775. (5) Si, W. J.; Zhou, J.; Zhang, S. M.; Li, S. J.; Xing, W.; Zhuo, S. P. Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim. Acta 2013, 107, 397-405. (6) Huang, W. T.; Zhang, H.; Huang, Y. Q.; Wang, W. K.; Wei, S. C. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 2011, 49, 838-843. (7) Li, X. A.; Xing, W.; Zhuo, S. P.; Zhou, J.; Li, F.; Qiao, S. Z.; Lu, G. Q. Preparation of capacitor's electrode from sunflower seed shell. Bioresource Technol.2011, 102, 1118-1123. (8) Rufford, T. E.; Hulicova-Jurcakova, D.; Khosla, K.; Zhu, Z. H.; Lu, G. Q. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J.Power Sources 2010, 195, 912-918. (9) Ismanto, A. E.; Wang, S.; Soetaredjo, F. E.; Ismadji, S. Preparation of capacitor's electrode from cassava peel waste. Bioresource Technol. 2010, 101, 3534-3540. (10) Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energ. Environ. Sci. 2014, 7, 379-386. (11) Peng, C.; Yan, X. B.; Wang, R. T.; Lang, J. W.; Ou, Y. J.; Xue, Q. J. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim. Acta 2013, 87, 401-408. (12) Tian, W. Q.; Gao, Q. M.; Tan, Y. L.; Yang, K.; Zhu, L. H.; Yang, C. X.; Zhang, H. Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 2015, 3, 5656-5664. (13) Hao, P.; Zhao, Z.; Leng, Y.; Tian, J.; Sang, Y.; Boughton, R. I.; Wong, C. P.; Liu, H.; Yang, B. Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano. Energy. 2015, 15, 9-23. (14) Song, S. J.; Ma, F. W.; Wu, G.; Ma, D.; Geng, W. D.; Wan, J. F. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 2015, 3, 18154-18162.
(15) Zheng, X. Y.; Lv, W.; Tao, Y.; Shao, J. J.; Zhang, C.; Liu, D. H.; Luo, J. Y.; Wang, D. W.; Yang, Q. H. Oriented and Interlinked Porous Carbon Nanosheets with an Extraordinary Capacitive Performance. Chem.Mater. 2014, 26, 6896-6903. (16) Li, Q. Y.; Wang, H. Q.; Dai, Q. F.; Yang, J. H.; Zhong, Y. L. Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch. Solid State Ionics 2008, 179, 269-273. (17) Liang, Q. H.; Ye, L.; Huang, Z. H.; Xu, Q.; Bai, Y.; Kang, F. Y.; Yang, Q. H. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 2014, 6, 13831-13837. (18) Wahid, M.; Parte, G.; Phase, D.; Ogale, S. Yogurt: a novel precursor for heavily nitrogen doped supercapacitor carbon. J.Mater. Chem.A 2015, 3, 1208-1215. (19) Xue, J. L.; Zhao, Y.; Cheng, H. H.; Hu, C. G.; Hu, Y.; Meng, Y. N.; Shao, H. B.; Zhang, Z. P.; Qu, L. T. An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Phys.Chem. Chem.Phys. 2013, 15, 8042-8045. (20) Bao, L. H.; Li, X. D. Towards Textile Energy Storage from Cotton T-Shirts. Adv. Mater. 2012, 24, 3246-3252. (21) Raymundo-Pinero, E.; Leroux, F.; Beguin, F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv.Mater. 2006, 18, 1877-1882. (22) Kim, Y. J.; Abe, Y.; Yanaglura, T.; Park, K. C.; Shimizu, M.; Iwazaki, T.; Nakagawa, S.; Endo, M.; Dresselhaus, M. S. Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon 2007, 45, 2116-2125. (23) Zhu, H.; Wang, X. L.; Yang, F.; Yang, X. R. Promising Carbons for Supercapacitors Derived from Fungi. Adv. Mater. 2011, 23, 2745-2748. (24) Pu, J.; Li, C. W.; Tang, L.; Li, T. T.; Ling, L.; Zhang, K.; Xu, Y. C.; Li, Q. W.; Yao, Y. G. Impregnation assisted synthesis of 3D nitrogen-doped porous carbon with high capacitance. Carbon 2015, 94, 650-660. (25) Misnon, I. I.; Zain, N. K. M.; Abd Aziz, R.; Vidyadharan, B.; Jose, R. Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim. Acta 2015, 174, 78-86. (26) Chen, M. D.; Kang, X. Y.; Wumaier, T.; Dou, J. Q.; Gao, B.; Han, Y.; Xu, G. Q.; Liu, Z. Q.; Zhang, L. Preparation of activated carbon from cotton stalk and its application in supercapacitor. J. Solid State Electr 2013, 17, 1005-1012. (27) Wu, F. C.; Tseng, R. L.; Hu, C. C.; Wang, C. C. Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. J. Power Sources 2005, 144, 302-309. (28) Subramanian, V.; Luo, C.; Stephan, A. M.; Nahm, K. S.; Thomas, S.; Wei, B. Q. Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 2007, 111, 7527-7531. (29) Qu, J. Y.; Geng, C.; Lv, S. Y.; Shao, G. H.; Ma, S. Y.; Wu, M. B. Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim. Acta 2015, 176, 982-988. (30) Parshetti, G. K.; Chowdhury, S.; Balasubramanian, R. Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel 2015, 148, 246-254. (31) Huang, B. C.; Shao, H. Y.; Liu, N. Q.; Xu, Z. C. J.; Huang, Y. Q. From fish scales to highly porous N-doped carbon: a low cost material solution for CO2 capture. Rsc Adv. 2015, 5, 88171-88175. (32) Yao, M. L.; Wang, L.; Hu, X.; Hu, G. S.; Luo, M. F.; Fan, M. H. Synthesis of nitrogen-doped carbon with three-dimensional mesostructures for CO2 capture. J. Mater. Sci.2015, 50, 1221-1227. (33) Sevilla, M.; Fuertes, A. B. Sustainable porous carbons with a superior performance for CO2 capture. Energ. Environ. Sci. 2011, 4, 1765-1771.
(34) Plaza, M. G.; García, S.; Rubiera, F.; Pis, J. J.; Pevida, C. Evaluation of ammonia modified and conventionally activated biomass based carbons as CO2 adsorbents in postcombustion conditions. Sep. Purif. Technol. 2011, 80, 96- 104. (35) Boonpoke, A.; Chiarakorn, S.; Laosiripojana, N.; Towprayoon, S.; Chidthaisong, A. Synthesis of Activated Carbon and MCM-41 from Bagasse and
Rice Husk and their Carbon Dioxide Adsorption Capacity. J. Sust.
Energ. Environ. 2011, 2, 77-81. (36) Zhao, L.; Bacsik, Z.; Hedin, N.; Wei, W.; Sun, Y. H.; Antonietti, M.; Titirici, M. M. Carbon Dioxide Capture on Amine-Rich Carbonaceous Materials Derived from Glucose. Chemsuschem 2010, 3, 840-845. (37) Wang, Y. X.; Liu, B. S.; Zheng, C. Preparation and Adsorption Properties of Corncob-Derived Activated Carbon with High Surface Area. J. Chem. Eng. Data 2010, 55, 4669-4676. (38) Plaza, M. G.; Pevida, C.; Martin, C. F.; Fermoso, J.; Pis, J. J.; Rubiera, F. Developing almond shell-derived activated carbons as CO2 adsorbents. Sep. Purif. Technol. 2010, 71, 102-106. (39) Shafeeyan, M. S.; Daud, W. M. A. W.; Houshmand, A.; Arami-Niya, A. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. Appl. Surf. Sci. 2011, 257, 3936-3942. (40) Xing, W.; Liu, C.; Zhou, Z. Y.; Zhang, L.; Zhou, J.; Zhuo, S. P.; Yan, Z. F.; Gao, H.; Wang, G. Q.; Qiao, S. Z. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energ. Environ. Sci. 2012, 5, 7323-7327. (41) Ma, X. Y.; Li, Y.; Cao, M. H.; Hu, C. W. A novel activating strategy to achieve highly porous carbon monoliths for CO2 capture. J. Mater. Chem. A 2014, 2, 4819-4826. (42) Fan, X. Q.; Zhang, L. X.; Zhang, G. B.; Shu, Z.; Shi, J. L. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon 2013, 61, 423-430. (43) Zhang, X. T.; Lin, D. H.; Chen, W. X. Nitrogen-doped porous carbon prepared from a liquid carbon precursor for CO2 adsorption. Rsc Adv. 2015, 5, 45136-45143. (44) Kim, Y. K.; Kim, G. M.; Lee, J. W. Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture. J. Mater. Chem. A 2015, 3, 10919-10927. (45) Ma, X. Y.; Cao, M. H.; Hu, C. W. Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture. J. Mater. Chem. A 2013, 1, 913-918. (46) Chandra, V.; Yu, S. U.; Kim, S. H.; Yoon, Y. S.; Kim, D. Y.; Kwon, A. H.; Meyyappan, M.; Kim, K. S. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem. Commun. 2012, 48, 735-737. (47) Shen, W. Z.; Zhang, S. C.; He, Y.; Li, J. F.; Fan, W. B. Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. J. Mater. Chem. 2011, 21, 14036-14040. (48) Sevilla, M.; Valle-Vigon, P.; Fuertes, A. B. N-Doped Polypyrrole-Based Porous Carbons for CO2 Capture. Adv. Funct. Mater. 2011, 21, 2781-2787. (49) Hu, X.; Radosz, M.; Cychosz, K. A.; Thommes, M. CO2-Filling Capacity and Selectivity of Carbon Nanopores: Synthesis, Texture, and Pore-Size Distribution from Quenched-Solid Density Functional Theory (QSDFT). Environ. sci. technol. 2011, 45, 7068-7074. (50) Zhang, Z. J.; Xu, M. Y.; Wang, H. H.; Li, Z. Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia. Chem. Eng. J. 2010, 160, 571-577. (51) Hao, G. P.; Li, W. C.; Qian, D.; Lu, A. H. Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2 Capture. Adv. Mater. 2010, 22, 853-857. (52) Xia, Y. D.; Mokaya, R.; Walker, G. S.; Zhu, Y. Q. Superior CO2 Adsorption Capacity on N-doped, High-Surface-Area, Microporous Carbons Templated from Zeolite. Adv. Energy. Mater. 2011, 1, 678-683.
(53) Pevida, C.; Drage, T. C.; Snape, C. E. Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture. Carbon 2008, 46, 1464-1474. (54) Wang, L. F.; Yang, R. T. Significantly Increased CO2 Adsorption Performance of Nanostructured Templated Carbon by Tuning Surface Area and Nitrogen Doping. J. Phys. Chem. C 2012, 116, 1099-1106. (55) Presser, V.; McDonough, J.; Yeon, S. H.; Gogotsi, Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energ. Environ. Sci. 2011, 4, 3059-3066.