Quantifying Turbulence for Tidal Power Applications

Report 1 Downloads 51 Views
Quantifying Turbulence for Tidal Power Applications J. Thomson1, M. Richmond2, B. Polagye1, V. Durgesh2 1

U. of Washington - Northwest National Marine Renewable Energy Center 2 Pacific Northwest National Laboratory – Hydrology Group

IEEE/MTS Oceans Conference 21 September 2010

NNMREC  

Mo#va#on     Turbine  performance     Turbine  fatigue       Environmental  effects  

NNMREC  

Objec#ves     Field  measurements  from  an  actual  tidal  power  site     Evaluation  of  metrics:       Turbulent  intensity,  I  =  σv  /    

Turbine site Port Townsend

  Turbulent  dissipation  rate,  ε     Coherence,    

  Best  practices:     Sampling  schemes     Rigorous  treatment  of  errors  

NNMREC  

Instruments  and  sampling     Acoustic  Doppler  

Current  Profiler  (ADCP):     volume  sampling                  

**  beam  coordinates**  

  64  s  @  2  Hz=  128  points,  

every  30  min  

ADV mount Accelerometer mount CTD mount ADCP mount Ballast (1500 lbs)

  Acoustic  Doppler  

Velocimeter  (ADV):     point  precision       64  s  @  32  Hz  =  2048  pts,  

every  10  min  

5 m tripod deployed in 22 m water depth

NNMREC  

Mean  veloci#es  

m

v,c

[m/s]

[m/s]

ADCP (Acoustic Doppler Current Profiler)

1.5 1 0

ADV (Acoustic Doppler Velocimeter) ADCP 4.6 m above seabed

05/07

05/14

0.2 0.1 0

NNMREC  

Raw  velocity  fluctua#ons   [m/s] 1.600 1.440 0.25 1.280

ADCP mv [m/s]

0.2

1.120 0.960

0.15

Raw ADCP data is noisy! 0.1

0.05

0.800 0.640

Corrected velocity std deviation is σv,c = √(σv2 – n2)

0.480 0.320

0 0

0.05

0.1

0.15 0.2 ADV mv [m/s]

0.25

0.3

0.160

NNMREC  

mv,c [m/s]

[m/s]

Corrected  results   1.5 1 0

ADV ADCP

05/07

05/14

05/07

05/14

0.2 0.1 0

Ic [%]

50 25

¡ [W/m3]

0

I ≈ 10% 05/07

05/14

ï1

10

ï3

10

NNMREC  

ï6

10

05/07

05/14

ADV ADCP

1.5 1 0

05/07

05/14

0.2 06ïMayï2010 01:30

0.1 0

m/s

mv,c [m/s]

[m/s]

Sta#onarity  (stable  mean)  

Vx

0

Vz

100 80 short, 60 0

cor

25but not too Short, 0

Vy

05/07 ï1 0

50 Ic [%]

1

05/14 10

20

10

20

05/07

ï3

10

snr

3

W/m ]

ï1

40

50

60

30

40

50

60

70

05/14

NNMREC  

100 50 0

70

records (“bursts”) are necessary for robust statistics… …see Polagye et al (in prep)

150

10

30

10

20

30 40 Time [s]

50

60

70

• Frequency spectra from ADV

Dissipa#on  rate  

• Inertial sub-range shows cascade of energy to small scales, • Slope is rate of energy loss

06ïMayï2010 01:30

ï2

10

Vx Vy Vz

ï3

2 2

S [m /s /Hz]

10

ï4

horizontal noise

10

ï5

fï5/3

10

vertical noise Inertial sub-range

ï6

10

ï2

10

ï1

10

0

10 f [Hz]

1

10

2

10

NNMREC  

Dissipa#on  rate  

• Spatial structure from ADCP • Inertial sub-range shows cascade of energy to small scales, • Slope is rate of energy loss

06ïMayï2010 01:30:00, z = 4.71 m, v = 0.8 m/s 0.05 0.045

Inertial sub-range

0.04

D(z,r) [m2/s2]

0.035 0.03 0.025 0.02 0.015

noise (along beam)

0.01

beam beam beam beam

0.005 0 0

5

10

15

20

1 2 3 4 25

r [m]

NNMREC  

mv,c [m/s]

[m/s]

Combined  results   1.5 1 0

ADV ADCP

05/07

05/14

05/07

05/14

05/07

05/14

05/07

05/14

0.2 0.1 0

Ic [%]

50 25

¡ [W/m3]

0 ï1

10

ï3

10

ï6

10

NNMREC  

Height [m]

Ver#cal  dependence   ADCP 20 ADV

20

20

18

18

18

18

16

16

16

16

14

14

14

14

12

12

12

12

10

10

10

10

8

8

8

8

6

6

6

6

4

4

4

4

2

2

2

2

0 0 0.5 1 1.5 [m/s]

0 0

0.1 0.2 mv,c [m/s]

0 0

20

5

10 I [%] c

0 ï2 ï1.5 ï13 log10(¡) [W/m ]

NNMREC  

Freq [hz]

Coherent  Turbulent  Kine#c  Energy   (eddies)   26.00 5.20 2.89 2.00 1.53 1.24 1.04 0.90 0.79 0.70 0.63 0.58 0.53 0.49 0.46 0.43 0.40 0.38 0.36 0.34

6.25

12.50

18.75

25.00

31.25

37.50

43.75

50.00

56.25

62.50

Time [s]

NNMREC  

Conclusions  

ADV I c ADCP I c 50

burst

40

30

20

  Turbulent  intensity  ≈  10%    

10

0 0

5

10 %

15

20

  Doppler  measurement  error  (“noise”)  can  heavily  bias  

observed  velocity  variance  and  must  be  removed.       Dissipation  rate  has  more  dynamic  range  the  turbulent  

intensity,  but  operational  significance  unknown  

  Coherent  TKE  shows  time-­‐space  scales  of  eddies  

NNMREC  

Acknowledgments     Funding  provided  by  the  U.S.  

Department  of  Energy,  Office  of   Energy  Efficiency  and  Renewable   Energy  -­‐  Wind  and  Water  Power   Program.  

  Tripod  assembly  and  deployment:  

Joe  Talbert  (UW-­‐APL)  

  Boat  ops:  Capt.  Andy  Reay-­‐Ellers,  

Alex  deKlerk  (UW-­‐APL)  

NNMREC  

Tripod  mo#on?   04ïMayï2010

1.5 0.2

v [m/s]

Acceleration [g]

0.4

1 0.5

0 12:00

15:00

0 18:00

NNMREC