Quantum chaos, quantum information, quantum complexity, quantum ...

Report 2 Downloads 342 Views
Quantum chaos, quantum information, quantum complexity, quantum gravity Dan Roberts IAS

December 8, 2016

Quantum {chaos, information, complexity, gravity} Dan Roberts IAS

December 8, 2016

Quantum: many worlds

>>> import random >>> quantum = [’chaos’, ’information’, ’complexity’, ’gravity’ ] >>> random.choice(quantum)

Quantum chaos: butterfly effect For all simple Hermitian operators W , V , having O(1) energy and localized at x and y , this commutator should grow: −h[V , W (t)]2 iβ =hV W (t) W (t) V iβ + hW (t) V V W (t)iβ − hV W (t) V W (t)iβ − hW (t)V W (t) V iβ

At t  |x − y |: I

norm of a perturbed thermal state

I

approaches hW W iβ hV V iβ = “1”

I

inner product of two different states

I

decays initially like ∼ 1 −

C0 λL (t−|x−y |/vB ) e N2

+ O(N −4 )

Quantum information: k-designs

Given an ensemble of unitary operators E = {pj , Uj } acting on H with probability distribution pj , the ensemble E is a unitary k-design if and only if X pj (Uj ⊗ · · · ⊗ Uj )ρ(Uj† ⊗ · · · ⊗ Uj† ) = | {z } | {z } j k k Z dU(U ⊗ · · · ⊗ U )ρ(U † ⊗ · · · ⊗ U † ) | {z } | {z } Haar k

for all quantum states ρ in H⊗k .

k

Quantum information: scrambling hA(0)B(t)C (0)D(t)iβ =

X

1 −βH A e iHt Be −iHt Z (β) tr {e

C e iHt De −iHt }

hA P † BP C P † DPiβ=0 = hAC ihBDi

P∈Pauli

Z Haar

dU hA U † BU C U † DUiβ=0 = −

d2

1 hAC ihBDi −1

Quantum complexity: counting How many circuits can we make with g gates acting on n qubits with C steps?  There are g n2 choices to make at each step, therefore we can make at most # circuits = (gn2 )C . If we have a collection of different circuits we want to make E, then if we want to ensure we can make all of them, we can determine the minimal number of steps C≥

log |E| . log(gn2 ) [w/ Yoshida]

Quantum complexity: lower bounds The frame potential can bound the number of elements in an ensemble 2k 1 X (k) † ≥ 1 22nk . FE ≡ tr {U V } |E|2 |E| U,V ∈E

This means we can bound the complexity of the ensemble by measuring the frame potential (k)

C(E) ≥

C(E) ≥ (2k−1)2n−log

n

2kn log(2) − log FE . log(choices) X

A1 ,··· ,B1 ,···

Z

2 o dU A1 U † B1 U · · · Ak U † Bk˜U . β [w/ Yoshida]

Quantum gravity: black holes 1 Action(W) = 16πGN

Z W



1 −g (R − 2Λ) + 8πGN

Z

p |h|K ,

∂W

Action(W) π~ (Neutral) black holes are fastest computers in nature. Complexity =

Quantum gravity: tensor networks

W (t) = e −Ht W e Ht

x

t

Tensor network for a single localized operator.

Quantum gravity: tensor networks

W (t) = e −Ht W e Ht

x

t

Tensor network for a single localized operator.

This slide is intentionally left blank.

Operator growth: light cones C (x, t) = −h[V , W (t)]2 iβ

[w/ Stanford/Susskind]

Operator growth: commutator C (x, t) = −h[Z1 (t), Z8 ]2 iβ 3

2

1

0

0

2

4

6

8

t

H=−

P

i

Zi Zi+1 + gXi + hZi [w/ Stanford/Susskind]

Operator growth: chaotic eigenvalues Eigenvalues of [Z1 (t), Z8 ] 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2

0

2

4

6

8

t

H=−

P

i

Zi Zi+1 − 1.05Xi + 0.5Zi [w/ Gur-Ari]

Operator growth: integrable eigenvalues Eigenvalues of [Z1 (t), Z8 ] 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2

0

2

4

6

8

t

H=−

P

i

Zi Zi+1 + Xi [w/ Gur-Ari]