Quantum Hall Systems (PDF)

Report 4 Downloads 168 Views
  Quantum  Hall  Systems   talk  by  B.  I.  Halperin  at  the  Simons  Symposium  on      Quantum  Physics  Beyond  Simple  Systems     St.  John,  U.S.V.I.,  February  1,  2012    

Outline   1.      Survey  of  important  issues  in  quantum  Hall      physics     2.      Theory  of  Interferometer  Experiments    

Quantum  Hall  Systems   Two-­‐dimensional  electron  systems  in  a  strong  magneMc  field  (broken   Mme  reversal  symmetry)    (Low  temperatures)   Many  varieMes:  different  Landau  level  filling  factors  (0.1  –  100);   different  levels  and  types    of  disorder;  different  materials.   Why  are  the  problems  hard?    For  a  parMally  full  Landau  level,  system  is   highly  degenerate  in  the  absence  of  interacMons.    So  electron-­‐ electron  interacMons,  and  electron  impurity  interacMons  have  a   huge  effect.     If  interacMons  are  weak  compared  to  the  cyclotron  energy,    can   project  onto  a  single  Landau  level,  kineMc  energy  is  quenched,  and   can  be  set  equal  to  zero.      But  not  like  a  classical  system  at  T=0;   a\er  projecMon,  different  Fourier  components  of  density  operator   do  not  commute  with  each  other.                      

Issues  in  Quantum  Hall  Systems   Universal  issues:    e.g.  Topological  classificaMon.  CharacterisMcs   which  can  take  on  only  a  discrete  set  of  values,  robust  to   small  perturbaMons.     Non-­‐universal  issues:  Depend  conMnuously  on  details.  Necessary   to  understand  real  materials  and  experiments.  

   

Universal  properMes   Ideal  QuanMzed  Hall  States:  Characterized  by  a  precise  filling  factor.  Energy   gap  for  charged  excitaMons  in  the  bulk.    Topological  classificaMon  of  states,   determined  by  Hamiltonian  in  the  bulk,  but  low-­‐energy  consequences  only   manifest  at  edges  or  defects.       Edges  of  quanMzed  Hall  states  must  support  low-­‐energy  charge-­‐carrying   excitaMons.    Certain  (minimal)    properMes  of  edges  determined  by   Hamiltonian  in  the  bulk.  Others  can  be  affected  by  edge  reconstrucMons.   A  discrete  set  of  finite-­‐energy    defects    (quasiparMcles)  can  exist  in  the  bulk.   Their  possible  charges    and  their  quantum  staMsMcs  are  dictated  by  the   nature  of  the  defect-­‐free  quantum  Hall  ground  state.   Universal  properMes  are  robust  to  small  changes  in  the  Hamiltonian,  weak   disorder.  Can  only  change  if  the  system  undergoes  a  phase  transiMon:   energy  gap  for  extended  charge  carrying  excitaMons    goes  to  zero  in  the   bulk;    or  first  order  transiMon.        

Universal  properMes  of  edges   Universal properties include quantized Hall conductance GH = ν e2/h , quantized thermal Hall conductance KH = κ π2 T/ 3h. (Kane and Fisher, 1996). (ν and κ are rational numbers.) Minimal edges have a specified number of edge states traveling in specified directions. Number can change if surface is reconstructed, but ν and κ must be conserved. In general: κ = NR-NL . (Majorana modes count ½). To compute ν: edge modes must be weighted by “charges”. Example: Integer QHE with f = N. Minimal model has N integer edge states, one for each Landau level, all moving in the same direction: ν = κ = N. If electron density varies slowly at the edge, no disorder, could get reconstruction with additional pairs of left and right moving edge states. But ν = κ = NR-NL = f is unchanged. In presence of disorder, extra pairs will become (at least eventually) localized, and only N right-movers remain extended, as in the minimal model.                  

Q1  

QuesMon  (Das  Sarma):    Are  you  talking  about  real  edges  or  ideal  edges?   Answer:  I  was  about  to  get  to  this  quesMon.    There  are  certain  properMes  that  are   universal,  and  cannot  be  affected  by  any  reconstrucMons  that  occur  at  the  edge.    

   

Other  properMes  can  be  affected  by  edge  reconstrucMons.

Q2  

   

QuesMon:  (Marcus)  How  can  thermal  conductance    be  zero  or  negaMve?       Answer:    Le\  movers  carry  heat  to  the  le\  and  right-­‐movers  carry  heat  to  the  right.     What  we  are  talking  about  here  is  the  thermal  Hall  conductance.    You  apply  a   temperature  gradient  in  the  x-­‐direcMon  and  you  measure  a  heat  flow  in  the  y-­‐ direcMon.    (Imagine  a  strip  oriented  along  the  y  axis,  with  a  temperature  gradient   in  the  x-­‐direcMon,  so  the  two  edges  are  a  different  temperatures.    The  edges  will   then  carry  a  net  energy  current  in  the  y-­‐direcMon.)      How  you  can  measure  this   effect  is  another  quesMon.    There  are  many  complicaMons  in  pracMce,  for  example   due  to  the  large  parallel  thermal  conducMon  by  phonons.    Also,  one  must  be   careful  about  boundary  condiMons  for  the  electron  system,    because  you  may    be   measuring  a  combinaMon  of  longitudinal    and  Hall  components,  and  if  there  is   electric  current  flow,  you  may  mix  in  thermoelectric  effects.      

FracMonal  QHE  edges       Fractional QHE states can be more complicated. Minimal edges may have only co-propagating modes (“right movers”), or may have both right and left movers (counter-propagating edge modes). Edge modes can carry fractional charge, make different contributions to ν and κ . Reconstructions can change charges as well as number of modes. Non-Abelian states can have additional modes, such as Majorana modes, which have charge zero and contribute ½ to κ . Note: Low energy modes also occur at an interface between two different QHE states.                        

Q3  

        Comment:  (Fisher):    There  are  other  universal  properMes  in  bulk  systems,  such  as     associated  with  transiMons  between  different  quanMzed  Hall  states.   Reply:    Yes,  I  will  come  to  that  later  in  my  talk.    

Non-­‐universal  bulk  properMes:  Nature  of   the  Ground  State   Several  types  of  QHE  states  can  exist  at  a  given  filling  factor.  ParMcularly  if   system  has  addiMonal  low  energy  degrees  of  freedom:  spin  or  pseudospin   (mulMple  valleys,  bilayers,  sublafces).   QuesMon:  Given  a  microscopic  Hamiltonian  and  filling  fracMon:  what  is  the   resulMng  ground  state?    Answer  depends  on  details.   Only  a  limited  number  of  QHE  states  will  occur  in  a  given  system.  Ground   state  at  a  general  (irraMonal)  filling  fracMon  f  will  generally  consist  of   localized  quasiparMcles  on  top  of  a  nearby  quanMzed  state  with  raMonal   filling  factor  f0  .  QuasiparMcles  may  be  localized  by  disorder  or  by   interacMons  (e.g.  Wigner  crystal,  lafce  of  bubbles,  stripes).  Hall   conductance  determined  by  f0.            

Q4  

QuesMon:  Why  can’t  there  be  an  infinite  number  of  quanMzed  Hall  plateaus?   Answer:    It  may  be  that  in  principle  there  could  be  a  quanMzed  Hall  state  at  any   raMonal  filling  fracMon,  given  a  suitably  engineered  Hamiltonian.  In  pracMce   however,  this  is  not  what  we  expect.    There  will  be  a  certain  number  of  stable   states  with  relaMvely  large  gaps,  which  can  be  the  lowest  energy  underlying  state   over  a  relaMvely  large  range  of  filling  factors.  These  states  will  then  swallow  up  all   other  possible  quanMzed  Hall  states  for  fillings  in  this  range.       More  precisely,  consider  what  happens  at  some  arbitrary  irraMonal  filling  factor  f.     Depending  on  the  details  of  the  system,  including  the  amount  of  disorder  present,   the  system  will  generally  fall  in  the  domain  of  airacMon  of  some  quanMzed  Hall   state,  at  a  raMonal  filling  f0  which  is  not  too  far  away.    The  ground  state  at  fracMon   f  will  therefore  consist  of  the  ideal  ground  state  at  filling  f0,  together  with  a  finite   density  of  quasiparMcles  or  holes  as  necessary  to  achieve  the  required  electron   density  for  filing  factor  f.        In  general,  we  expect  the  added  quasiparMcles  or   quasiholes  to  be  localized  at  low  temperatures,  due  to  some  combinaMon  of   disorder  or  Coulomb  interacMons,  so    they  do  not  contribute  to  transport  at  very   low  temperatures.  Thus,  one  obtains  vanishing  longitudinal  resistance,  and  one   sees  the  Hall  conducMvity  of  the  parent  state,    f0.         In  most  cases  we  may  expect  to  see  sharp  transiMons  from  one  Hall  plateau  to  another   as  one  varies  the  filling  factor  f.    However,  in  some  cases,  as  in  the  vicinity  of  f=1/2   for  a  single=layer  system,  we  find  that  there  exists  a  metallic  state,  with   conMnuously  varying  Hall  resistance,  and  a  finite  longitudinal  resistance,  whose   value  depends  on  the  sample.   •     

   

Q5  

        QuesMon:  Das  Sarma:    Can  the  plateau  you  are  on    depend  on  temperature?       Answer:    Strictly  speaking,  the  plateaus  are  only  rigorously  defined  at  zero   temperature.  However,  there  can  be  approximate  plateaus  ,    which  can  exist  at   some  finite  temperature      over    some  range  of  filling  factors  where  there  is  no   plateau,  or  a  different  plateau,    zero  temperature.  Such  things  have  been  seen.    

TransiMons  between  quanMzed  Hall   plateaus  when  f  is  varied.   TransiMons  between  integer  plateaus    for  non-­‐interacMng  electrons  in   the  presence  of  disorder  have  been  studied  extensively.  Believed  to   have  universal  properMes  (e.g.  criMcal  exponents)  that  have  been   calculated  numerically.    Applicability  in  the  presence  of  interacMons   not  clear.  For  interacMng  electrons  when  disorder  is  small,   fracMonal  states  intervene,  can  get  transiMons  between  fracMonal   states,  or  between  integers  and  fracMons.       Can  also  have  metallic  states  at  certain  filling  factors  (e.g.  f=1/2)  with   σxx    finite    (sample-­‐dependent)  down  to  lowest  reasonable   temperatures.  Metallic  states  have  no  energy  gap,  finite   compressibility,  no  plateau  in  σxy.    Universal  properMes  predicted   for  transport,  excitaMon  spectrum,  etc.    in  limit  of  vanishing   disorder.                        

Q6  

 QuesMon:  (Das  Sarma).    Don’t  you  have  to  have  a  compressible  state  between  

any  two  incompressible  quanMzed  Hall  states?  

  Answer:  In  some  cases,  as  near  f=1/2,  as  previously  menMoned,  there  can  be  a   “compressible”  metallic  state,  with  finite  resisMvity,  over  a  range  of  filling   factors.    However,  this  is  probably  the  excepMon,  rather  than  the  rule.    For   non-­‐interacMng  electrons,  in  the  presence  of  disorder,  we  believe  there  will  be   a  direct  transiMon  between  integer  Hall  states,  which  is  sharp  at  zero   temperature.    This  is  based  on  the  renormalizaMon  group  arguments  of   Pruisken,  and  various  numerical  simulaMons,  etc.    At  finite  temperature,  the   Hall  resistance  will  change  conMnuously  as  one  varies  the  filling  factor,  but  the   range  of  f  over  which  the  Hall  resistance  changes  its  value  becomes  narrower   as  the  temperature  is  lowered,  vanishing  in  the  limit  of  T=0.    (For  the  strictly   non-­‐interacMng  case,  the  longitudinal  conductance  is  always  zero,    but  in  the   presence  of  phonons  or  other  mechanisms  for  inelasMc  scaiering,  there   should  be  a  finite  longitudinal  resistance  in  the  range  of  f  where  the  Hall   resistance  is  changing.)    We  believe  that  similar  sharp  transiMons  between   integer  plateaus  will  occur  when  electron-­‐electron  interacMons  are  taken  into   account,  provided  there  is  sufficient  disorder  to  suppress  any  fracMonal   quanMzed  Hall  states.      For  smaller  values  of  disorder,  where  fracMonal   quanMzed  Hall  states  are  present,  there  can  be  transiMons  between  quanMzed   Hall  states  that  are  qualitaMvely  similar  to  the  integer  transiMons,  though  they   might  have  different  criMcal  exponents,  etc.          

Q7  

 Comment:    Fisher:      A  direct  transiMon  is  always  possible  between  a  mother  state  and  a   daughter  state,  as  between  f=1/3  and  f=2/5,  but  this  may  not  be  possible  in  other   cases,  such  as  1/3  to  2/3.   Reply:    I  am  not  sure  what  you  mean  by  a  direct  transiMon.      I  would  think  that  at  least  a   first-­‐order  transiMon  between  any  two  fracMons  might  be  possible  in  principle.  [At  least   in  the  case  of  short-­‐range  interacMons  between  the  parMcles].     Fisher:    The  quesMon  is  whether  you  can  have  a  direct  second-­‐order  transiMon  between  say   1/3  and  4/5.   Reply:    We  should  probably  talk  about  this  more,  off  line.   [Added  remarks:    The  situaMon  becomes  more  subtle  when  one  takes  into  account  effects   of  the  long-­‐range  Coulomb  interacMon  in  addiMon  to  disorder  and  short-­‐range   interacMons.    When  direct  transiMons  are  disfavored,  there  can  be  re-­‐entrant  phases,   where  the  Hall  conductance  is  a  non-­‐monotonic  funcMon  of  the  electron  density.    ]    

 

An  open  problem  of  great  current  interest:   FQHE  in  Graphene   Lowest  Landau  Level  pseudopotenMals  are  the  same  as  in  GaAs.     But  Valley  +  Spin  Degeneracy  -­‐>    SU(4)  Symmetry  (Approximate).       New  states  are  possible.     Experiments  show  many  fracMons,  but  some  are  missing.  Why?   ExplanaMons  require  understanding  of  excitaMon  energies  as   well  as  ground  states.  

 

Q8  

  QuesMon:  (Das  Sarma):    How  much  can  we  trust  the  experiments  on  fracMonal  Hall   states  in  graphene?  Are  we  confident  that  the  reported  fracMons  are  correctly   idenMfied?    Are  we  confident  that  the  missing  fracMons  are  really  missing?     Answer:    At  least  in  the  case  of  Amir’s  compressibility  measurements,  I  find  the  data   very  convincing.    As  he  can  produce  color  plots  on  the  plane  of  filling  factor  and   electron  density,  one  can  see  very  clearly  the  existence  of  straight  verMcal  lines  at   idenMfiable  filling  fracMons,  which  are  clearly  associated  with  fracMonal  quanMzed   Hall  states.    Of  course,  we  can’t  say  that  the  missing  fracMons  are  truly  missing.     Perhaps  they  will  appear  in  beier  samples  at  lower  temperatures.    But  we  do  not   understand  why  some  are  seen  in  the  experiments  and  some  not.    For  example,   Amir  does  not  see  an  incompressible  state  at  filling  fracMon  f=1/3  (corresponding   to  Hall  conductance  -­‐5/3),    while  he  does  see  clear  fracMons  at  f=2/3,  4/3,  and  5/3.   In  fact,  I  would  be  preiy  sure  that  a  quanMzed  Hall  state  of  the  Laughlin  type   should  be  the  true  ground  state  at  filling  fracMon  f=1/3  in  a  perfect  graphene  layer.     However,  the  energy  to  produce  charged  excitaMons,  such  as  valley  skyrmions,   might  be  sufficiently  low  that  the  plateau  is  easily  wiped  out  by  disorder  and/or   finite  temperature.    Perhaps  Amir  will  show  us  data  on  this  in  his  talk.    

QuanMzed  Hall  State  at  ν=5/2   Possible ground states: Pfaffian state (Pf), proposed by Moore and Read. Elementary charges have charge e/4 and non-Abelian statistics. Electrons in second Landau level are fully spin polarized Anti-Pfaffian state (APf): (Particle-hole conjugate of Pfaffian). Bulk properties are similar to Pf; quasiparticles have similar charge and statistics to Pf; but edge states are different. APf edge has counter-propagating neutral mode; minimal Pf edge has no counter-propagating mode. (Lee, Ryu, Nayak and Fisher; Levin, Halperin, and Rosenow 2007). Other possible ground states are not completely ruled out.

     

Experimental  tests     Necessary  characterisMcs  of  either  Pf  or  APf  state  at  5/2:   State  should  have  charge  e/4  quasiparMcles.   State  should  be  maximally  spin-­‐polarized.   Recent  measurements  of  charging  events  using  an  SET  (Yacoby   group)  point  strongly  to  charge  e/4.   Recent  NMR  measurements  (Murata  group,  Bar-­‐Joseph  group)     support    full  spin  polarizaMon.          

Experimental  observaMons  of  counter-­‐ propagaMng  neutral  modes   Heiblum  group  has  seen  compelling  evidence  for  a  counter-­‐ propagaMng  neutral  edge  mode  in  5/2  state,  (as  well  as  for   2/3,  5/3).  Experiments  study  shot-­‐noise  in  a  geometry  with  a   QPC  and  extra  contacts  arranged  to  prevent  charge  mode   from  reaching  the  detector.             Results  at  5/2  (along  with  previous  studies  of  non-­‐linear   conductance  at  a  constricMon  by  Marcus  group),  suggests  APf   rather  than  Pf.  But  reconstructed  Pf  edge  could  also  have   counter-­‐propagaMng  modes.   Ground  states  completely  different  than  Pf  and  APf  cannot  be   ruled  out.                

Q9  

    QuesMon:    Didn’t  the  counter-­‐propagaMng  neutral  mode  measurements  depend  on   shot  noise?    Since  shot  noise  measurements  have  given  varying  values  for  the   charge,  can  we  trust  the  neutral  mode  results?   Answer:    The  neutral  mode  experiments  do  not  depend  on  precisely  what  is  tunneling   between  the  edges,  as  long  as  something  is  tunneling,  so  I  think  the  conclusions   are  preiy  robust.   QuesMon:  What  about  edge  reconstrucMon?    What  if  the  edge  is  very  gradual   Answer:    Yes,  it  is  true  that  if  there  is  enough  edge  reconstrucMon,  any  bulk  fracMon   can  acquire  counter-­‐propagaMng  modes  at  the  edge.    However,  the  Weizmann   experiments  did  see  counter-­‐propagaMng  modes  at  fracMons  where  they  are   expected  and  did  not  see  counter-­‐propagaMng  modes  at  various  other  fracMons   where  they  would  not  be  expected  in  a  minimal  edge.    

Non-­‐universal  pracMcal  quesMon   What  determines  strength  of  disorder  in  actual  samples?  How   do  various  type  of  disorder  limit  conducMvity  in  metallic  state   at  f=1/2,  or  the  number  of  fracMonal  states  seen.    Only  partly   correlated  with  zero  field  mobility,  or  with  quantum   scaiering  rate,  measured  in  weak-­‐field  Shubnikov-­‐de  Haas   experiments.            

Other  non-­‐universal  bulk  properMes   Energies  to  produce  various  forms  of  charged  excitaMons.     (QuasiparMcles  can  have  different  spin  states,  could  be   skyrmions)     Energy  spectra  for  neutral  excitaMons  (spin  waves,  excitons)   Transport  properMes  at  finite  temperatures.  Effects  of  disorder   (long  wave-­‐length  and  short)  formaMon  of  puddles  of   quasiparMcle  or  quasihole.    Transport    “acMvaMon  energies”:   reducMon  from  ideal  values  because  of  disorder.  (cf.   d’Ambrumenil,  Halperin,  Morf,  PRL  2011,  effects  of  tunneling   through  saddle  points  in  the  impurity  potenMal)    

Q10  

   QuesMon:    (Marcus)      Can  you  conclude  that  if  we  go  to  low  enough  temperatures,  in  

clean  enough  samples,  the  there  will  be  a  quanMzed  Hall  state  at  f=1/2,  like  at   f=5/2?      

    Answer:    No.    Just  like  in  normal  metals,  some  metals  become  superconductors  at  low   temperatures  and  some  do  not,  at  least  at  any  experimentally  reachable   temperature,  I  would  expect  that  the  5/2  state  has  an  energy  gap  and  the  ½  does   not.      However,  we    do  not  know  the  answer  for  sure.       The  difference  between  the  quanMzed  Hall  state  and  the  metallic  state  is  in  fact   analogous  to  the  occurrence  or  non-­‐occurrence  of  superconducMvity  in  an   ordinary  metal  at  zero  magneMc  field.    The  existence  of  superconducMvity  in   ordinary  metals  depends  on  the  nature  of  the  effecMve  interacMons  between  the   electrons;  in  the  quantum  Hall  case,  the  occurrence  of  a  gap  depends  on  the   interacMons  between  composite  fermions.    These  are  different  in  the  first  and   second  Landau  levels,  because  the  form  factors  for  the  electron  states  are   different.    In  the  case  of  zero  magneMc  field,  there  is  a  Kohn-­‐Lufnger  theorem   which  states  that  even  for  repulsive  interacMons,  there  should  always  be   superconducMvity  at  very  low  temperatures  (perhaps  ridiculously  low).    As  far  as  I   understand  it,  this  theorem  should  not  apply  to  the  composite  fermions  at  f=1/2   because  the  system  is  spin  polarized  ,  and  pairing  in  even  angular  momentum   states  is  excluded.    However,  we  cannot  rule  out  the  possibility  or  pairing  at  some   very  low  temperature.    

Tools  for  addressing  non-­‐universal   properMes   Exact  diagonalizaMon  of  small  systems.   VariaMonal  calculaMons  (e.g.  Jain’s  trial  wave  funcMons)     Some  exactly  soluble  special  models.   Approximate  methods.  (e.g.  “Hamiltonian  method”  of   Murthy  and  Shankar)   Other  methods?      

Q11  

    QuesMon:    What  about  DMRG  calculaMons?   Answer:    This  is  what  I  was  thinking  of  when  I  said  that  renormalizaMon  group   methods.  Have  been  used,  and  I  was  thinking  of  the  work  in  Das  Sarma’s  group.     However,  so  far  this  has  only  been  able  to  extend  the  range  of  exact   diagonalizaMon  to  systems  with    a  few  more  electrons.   Comment  (Das  Sarma).    We  were  able  to  go  from  22  to  26  electrons  at  filling  ½.    It  is   hard  to  imagine  one  could  go  much  further.          

Quantum  Hall  interferometers   Interference  measurements  are  potenMally  an  important  tool   for  studying  various  types  of  quanMzed  Hall  states.    Several   types  of  interferometers;  transport  through  edge  states  and   constricMons.   Fabry-­‐Perot  and  Mach-­‐Zehnder  geometries,  have  been   implemented  in  quanMzed  Hall  systems.  (MZ  only   implemented  in  integers.)   Also  two-­‐parMcle  interferometers  (Hanbury-­‐Brown  Twiss).   Interference  between  two  electrons  from  two  independent   sources.     We  will  focus  here  on  the  Fabry-­‐Perot.  

Fabry  Perot  interferometer  in  a  quanMzed  Hall   system:   1

I

2

t1

t2

I

A  Hall  bar  with  two  constricMons,  (quantum  point  contacts)  narrow  enough  so  that   parMcles  can  scaier  from  one  edge  to  the  other.  Look  for  interference  between  two   constricMons.  

QuanMzed  Hall  system  with  no  backscaiering      

1

I

2

t1

t2

I

If    no    backscaiering  (t1=t2=0)  there  will  be  no  voltage  drop  between  contacts  1  and  2.       Contacts  on  opposite  edges  of  the  Hall  bar  will  measure  the  quanMzed  Hall  voltage,    VH  =I   h  /  ν e2.        

Fix  gate  voltage  at  point  contacts.    Vary  area  A  by  varying  voltage   on  side  gate.    Measure  resistance  V12/I.  Expect  oscillaMons  in  the   resistance  as  a  funcMon  of  A

 

1

I

2

t1

t2

Side Gate

I

Other  Variables   Oscillations should also occur if one varies the magnetic field B, keeping the gate voltage constant. What are the periods of the oscillations that result? What are their amplitudes? Can also get oscillations by applying voltage to a back gate or top gate, which vary the electron densities in different regions. Note: actual side gates will couple to the electron density as well as to the area of the interferometer.

Non-­‐interacMng  electrons ν  =  1.                    Weak   backscaiering  at  constricMons  

Basic interference process: R ∝ |t1 + t2eiϕ|2 , Where φ = 2π BA /Φ0

Φ0 = h/|e| = “flux quantum”.

Dependence on field: When B is varied, if A is fixed, ϕ changes by 2π when δΒ A = Φ0 . Field period δΒ = Φ0 /A

Dependence on area: if B is fixed, ϕ changes by 2π when δA B = Φ0 . Area period δA = Φ0 /B = area that encloses one magnetic flux quantum.

Prediction: Lines of constant interference phase should have negative slope in the B -VG plane, assuming dA/dVG > 0 .  (Similar   predicMons  for  integer  states  with  ν  >  1.)  

Predicted  Aharonov-­‐Bohm    behavior   Measure  in  a  2D  plane  of  B  and  VG   Lines  of  constant  phase   have  negaMve  slope.       .    

Yiming Zhang et al., 2009: Experimental results

Two  types  of  behavior   Measure  in  a  2D  plane  of  B  and  VG   “Coulomb  Dominated”  

“Aharonov-­‐Bohm”    

CD  stripes  have  posiMve  slope,  and  field  period  may  be  different  than  AB  

Checker-­‐board  paiern  -­‐-­‐    Experiments    From  Ofek  et  al.,  PNAS  2011  

Real  quantum  Hall  interferometers   are  not  simple  systems.     Need  to  take  into  account  Coulomb  interacMons  and  disorder,   interacMon  between  edge-­‐states  and  localized  quasi-­‐parMcles  in  the   interior  of  the  dot,  small  but  finite  mobility  of  localized  quasi-­‐parMcles   that  allows  their  distribuMon  to  relax  and  screen  Coulomb  interacMons   on  a  laboratory  Mme  scale.    Total  net  number  of  quasiparMcles  in   localized  states  is  constrained  to  be  an  integer.          

TheoreMcal  framework  for  discussing  Fabry-­‐ Perot  Quantum  Hall  Interferometers   Described  in   work with Bernd Rosenow, Ady Stern, and Izhar Neder. (PRB 2011). Motivated by experiments at Harvard by Yiming Zhang, Doug McClure, Angela Kou, and C. M. Marcus, who also contributed to the theoretical picture. Also, by experiments in Heiblum lab at Weizmann. [See article by N. Ofek, A. Bid, M. Heiblum, A. Stern, V. Umansky, and D. Mahalu (PNAS, 2010)] Partly based on earlier work: B. Rosenow and B. I. Halperin,

PRL 2007.

And many other antecedents in the literature, dating back to the late 1980s.

 

Historical  remarks   Fabry-­‐Perot  interference  experiments  in  the  integer  regime  date  back  to   late  1980s:  van  Wees,  et  al;  Simmons  et  al.;  etc.     Many  technical  improvements  since  then.  Include  use  of  back  gates  to  vary   density  by  Goldman  group.    Recent  introducMon  of  2D  color  maps  of   resistance  in  B  –  VG  plane.     TheoreMcal  work,  recognizing  the  importance  of  Coulomb  interacMons  in   interference  experiments  ,  and  of  fracMonal  staMsMcs  for  FQHE,  also  date   back  to  late  1980’s  and  early  1990’s:  Jain,  Kivelson,  Patrick  Lee,  Goldman   and  Su.  Important  paper  by  Chamon,  Freed,  Kivelson,  Su,  and  Wen  (1997).     Current  work  is  a  refinement  of  these  ideas.                  

Example  from  a  talk  by  C.  Marcus,  experiments  by  McClure  et  al.   Varying  magneMc  field  over  a  wide  range,    sees  oscillaMons  at  various   plateaus.  Focus  on  low  field  edges  –  strong  backscaiering  regime.  

Behavior  at  a  constricMon  (QPC)     Example:      Integer    QHE  .                                                  

ConstricMon  Example   0 νout = 1 νin = 2 ν=3 2 1 0 1 < νc < 2 ; red curve is partially back-scattered 3±ε

νbulk =

Weak  Back-­‐Scaiering  ConstricMon     0 νout = 1 νin =

2 ν=3 2 1 0 νc = 2-ε ; red edge is weakly back-scattered. High field side of νc = 2 plateau.

Strong  Back-­‐Scaiering  ConstricMon     =  Weak  Forward  Scaiering   0 νout = 1 νin = 2 ν=3 2 1 0 νc = 1+ε ; red edge is mostly back-scattered. High field side of the νc = 1 plateau.

Behavior  at  a  ConstricMon  (2)               Only  extended  edge  states  were  shown.     Generally  there  will  be  many    addiMonal  states   corresponding  to  localized  electrons  or  holes  in  the   various  Landau  levels,  with  energies  slightly  above  or   below  the  Fermi  energy.    At  non-­‐zero  T,  these  states  will   give  rise  to  a  finite  conducMvity,    which  may  be  small,  but   enough  to  screen  potenMal  variaMons  on  laboratory  Mme   scale.                                        

Alternate  tunneling  path   Example:  system  with  2  constricMons  at  ν  =  2   (Rosenow  and  BIH,  2007)  .    

Different  paths  can  contribute  in  different  regimes  of  filling  fracMon.   Density  in  constricMons  may  be  different  than  in  bulk.      

Origin  of  CD  period  –  weak  back-­‐scaiering   regime.   Area  Ae  of  interfering  edge  state  maybe  wriien  as     Ae  =  A0  +  δAe  ,   where  A0  is  a  smooth  funcMon  of  VG  and  B,    while    δAe    is  small  but   oscillates  on  the  scale  of  one  flux  a  quantum  or  of  the  addiMon  of  one   electron.   OscillaMons  occur  because  of  Coulomb  interacMon  between  edge  state   area  and  the  (integer)  number  of  localized  charges  in  the  interior  of  the   dot.    OscillaMons  in  δAe  give  rise  to  oscillaMons  in  the  resistance  with  a   different  period  than  AB  period.     (We  neglect  dependence  of  A0  on  B)  

Periodicity  of  energy  funcMon  and   interference  phase   Let b = B A0 / Φ0 be the number of flux quanta in area A0. Claim: if b is increased by 1, interference signal returns to original value. Reason: we can keep the areas of the partially reflected edge state and all fully transmitted edge states fixed, and decrease NLoc by νin = νout+1. Then total charge of the island is unchanged, position of each edge state is unshifted, and total energy will be the same as before. Interference phase φ = 2π BAe / Φ0 is increased by 2π , and e iφ is unchanged. Fundamental field period is the AB period. But φ will not just increase linearly in the interval. Increase in φ need not be monotonic. Fourier transform of e iφ may be stronger at harmonic (- νout) than at fundamental. Because of Coulomb interactions, area will tend to shrink as B is increased, then will increase again each time NLoc changes by -1.

Area  Ae  and  phase  for  νC  =  2  -­‐ε,  νout=  1   φ = 2π BAe / Φ0

If  Coulomb  coupling  is   strong,  Ae  may  shrink   enough  so  that  φ   iniMally  decreases  as  B   is  increased     Φ0/2 AB  Slope   A0 δ B Jump  Δφ  =  2π  keL  /  ke  .      

Extreme    CD  Limit  

In  extreme    CD  limit,    where    energy  tries  to  keep  total  charge  fixed.  When  NLoc   changes  by  -­‐1,    we  find  a  jump                                                              Δφ  =  2π. Has  no  effect  on    eiφ,  no  effect  on  interference  signal.  

Phase  for  νC  =  2  -­‐ε,      νout  =  1;        CD  Limit   φ = 2π BAe / Φ0

CD  slope  

Φ0/2 AB  Slope   A0 δ B Apparent  slope  =  -­‐  2π  νout  /  Φ0  .        Flux  period  =    -­‐  Φ0  /  νout    

Results  for  field  period  –  Integer  QHE   For weak back-scattering, find CD period is A0 ΔB = Φ0 / m , where m = - ν out Period is unchanged if we increase back scattering, all the way to strong back scattering regime. In strong backscattering regime, CD period may be understood as Coulomb blockade physics. (AB period could also exist in strong backscattering regime for weak Coulomb interactions.) Periods should only change when you cross a Hall plateau, not along a riser

     

Problem   We  do  not  have  a  good  understanding  of  when  a   parMcular  system  will  be  in  the  AB  regime  and  when  it   will  be  in  the  CD  regime.  

FracMonal  QuanMzed  Hall  States   Methods can also be applied to fractional quantized Hall edge states. (Either ν out or ν in or both may be fractions.) Must take account of fractional charges and fractional statistics (i.e, effective magnetic flux associated with addition of quasiparticles). Do bookkeeping carefully. For field period, always find A0 ΔB = Φ0 / m , where m is an integer. Never find period bigger than Φ0 as one might naively expect for quasiparticles with fractional charge. Prediction for Jain fractions with no counter-flowing modes: Flux period in CD regime is given by m = - ν out / e*out . (AB regime can also exist, results are more complicated.) Predictions agree with most experiments. (Experiments by Goldman group at Stony Brook, reporting period larger than Φ0 are not understood.)

Q12  

          QuesMon:    What  if  you  have  dirty  edges?   Answer:  Except  in  the  case  of  the  third  process  which  I  menMoned,    I  have  assumed   that  you  can  neglect  scaiering  between  co-­‐propagaMng  edge  modes  along  the   perimeter  of  the  interferometer,    and  that  tunneling  only  takes  place  in  the   constricMons  between  two  modes  from  opposite  edges,  which  move  in  opposite   direcMons.  If  there  is  a  lot  of  scaiering  between  several  parallel  edge  states,  I   expect  that  would  tend  to  weaken  or  destroy  the  interference  signal,  but  we  have   not  considered  this  situaMon  in  detail.  

 

Edges  with  counter-­‐propagaMng   modes?   Example: boundary between ν = 2/3 and ν = 0. Situation is more complicated; not completely sorted out.. Experiments have not seen interference in Fabry-Perot geometry in situation where (say) νout= 0, νin = 2/3 . Interference has been seen in situation where νout = 2/3, νin = 1, by McClure and collaborators (Marcus lab). This is a simple boundary, one edge mode. Results show CD stripes, with expected field period, m = νout / e*out = 2.    

Tunneling  through  an  AnM-­‐Dot  at  ν=2/3     Experiments by Angela Kou et al. (Marcus Lab) have observed oscillations in tunneling through an anti-dot, when the filling factor outside the dot is on the high-field side of the ν=2/3 plateau . (ν = 2/3 – ε ). This corresponds to νout=2/3, νin=0, edge with counterpropagating modes. Experimental results: stripes have positive slope in plane of B and VG (voltage on center gate that produces anti-dot). Field period corresponds to addition of flux Φ0 . Gate period corresponds to addition of charge 2e/3 . (Note: AB stripes would have positive slope, as well as CD stripes, in the anti-dot configuration.) Experiments are not well understood.    

Q13  

     

• 

Comment  (Marcus).    I  am  not  quite  ready  to  buy  into  your  disMncMon  between   “Coulomb  Dominated”  and  “Coulomb  Blockade”.  

• 

Answer:    I  feel  that  there  are  really  two  different  phenomena  here,  and  it  is   confusing  to  call  them  by  the  same  name.    I  would  say  that  the  Coulomb   Dominated  period  could  be  the  dominant  one  even  for  the  case  of  very  weak  back   scaiering,  where  the  interfering  edge  state  is  almost  perfectly  transmifng,  and   the  conducMon  is  in  no  sense  blockaded.      I  would  reserve  the  work  “blockade”  to   refer  to  the  strong  back-­‐scaiering  case,  where  one  has  an  almost  closed  edge   state,  with  a  definite  parMcle  number,  and  transmission  maxima  occur  at  points   where  edge  state  has  equal  energies  for  N  and  N+1  parMcles.  I  would  call  this   Coulomb  blockaded  if  Coulomb  interacMons  dominate  the  energy  spacings.     However,  the  nearly-­‐closed  edge  state  would  contain  a  discrete  number  of   electrons  even  for  non-­‐interacMng  electrons.    In  that  case  we  would  say  that  the   dot  is  quantum-­‐blockaded  rather  than  Coulomb  blockaded.    As  one  climes  the  riser   between  two  plateaus  in  RD,  one  goes  conMnuously  from  weak-­‐back  scaiering  to   strong  back  scaiering.    In  principle,  interferometer  oscillaMons  may  be  seen  all   along  the  riser,  and  the  period  need  not  change.  The  period  could  be  characterisMc   of  the  CD  regime  or  cold  be  characterisMc  of  the  AB  regime.    For  weakly  interacMng   electrons  one  could  see  AB  periods  even  in  the  strong  back-­‐scaiering,  blockaded   regime.  

 

Interference  experiments  might  also  provide  a   way  of  detecMng  non-­‐abelian  staMsMcs  at  f=5/2  

Suggestions by: Das Sarma, Freedman and Nayak (PRL 2005) Stern and Halperin (PRL 2006) Bonderson, Kitaev, and Shtengel (PRL 2006)

Weak  back-­‐scaiering:  V12∝⏐t1  +  t2  e2πiΩ⏐2  ,  with   δΩ=δA  B/4Φ0  ,-­‐-­‐  only  if  the  qh  number  is  even.  

1

I

2 +

ν= 5/2

+

t1

t2 +

ν= 5/2

I

+

If interference path contains an odd number of localized quasiholes, quasiparticle path tunneling at point t2 changes the state of enclosed zero-energy modes, and cannot interfere with path tunneling at t1.

If central region contains an odd number of localized quasiparticles, the lowest order interference term is absent. Then leading interference term varies as Re [t1* t2 e2πiΩ ]2 . (Period corresponds to an area containing two flux quanta, rather than four.) Similar period could result from tunneling of doubly charged (e/2) quasiparticle. If area is varied by a large amount, number of enclosed charged quasiparticle may change; period may alternate between (e/4) and (e/2).

AlternaMon  of  two  periodiciMes  has  been   observed   Seen  in  experiments  on  ν=5/2  system  by  Willei  and  coworkers.   But  there  are  important  problems  with  the  interpretaMon:   Predicted  behavior  should  only  apply  if  localized  quasiparMcles  are  very   well  isolated  from  edges.  This  criterion  is  not  met  in  experiments.     Possibly,  behavior  could  be  explained  if    e/4    quasiparMcles  are  almost   always  bound  into  pairs.          

Recent  development:  “Telegraph  noise”  in  a   Fabry  Perot  interferometer  at  ν=5/2  and    ν=7/3   Experiments  by  An  et  al  (W.  Kang  lab)    arXiv  :1112.3400   Theory  by  Rosenow  and  Simon  (November.  2011)    Evidence  for  non-­‐Abelian  staMsMcs  in  size  of  phase  jumps.    (Requires  several   assumpMons).                  

Conclusions   Quantum  Hall  systems  are  not  simple.     There  are  many  open  quesMons.  

Q14  

 QuesMon  (Das  Sarma):    Do  you  understand  Willei’s  data  at  filling  5/2?       Answer:    No.    One  could  speculate  that  some  type  of  pairing  or  strong  coupling   between  the  quasiparMcles  restores  the  e/4  period  in  some  intervals  of  gate   voltage  and  not  in  others,  but  I  do  not  have  a  convincing  theory.    The  recent   preprint  by  Rosenow  and  Simon  has  some  proposals  about  this,  primarily  in  the   context  of  the  telegraph  noise  experiments  of  An  et  al;  but  there  are  a  number  of   assumpMons  in  the  paper  which,  the  authors  admit,  are  rather  speculaMve,  and  we   will  have  to  see  how  this  works  out.  

 

Q15  

    QuesMon:    The  theoreMcal  analysis  of  Rosenow  and  Simon  invokes  a  rather  involved   argument  about  screening  of  Coulomb  interacMons  in  order  to  explain  the   telegraph  noise  results  at  f=7/3.  Can’t  one  understand  these  without  recourse  to   Coulomb  interacMons?       Answer:    I  think  one  could  understand  the  results  without  Coulomb  interacMons  if  one   believes  the  experiments  at  7/3  are  in  an  AB  regime.    However,  Rosenow  and   Simon  do  not  want  to  make  that  assumpMon  because  the  same  experiment  at  f=2,   seem  to  be  clearly  in  the  CD  regime.  

Q16  

    QuesMon:      How  do  we  know  that  the  measurements  are  really  at  5/2?   Answer:    I  think  we  know  that  one  is  very  close  to  5/2  at  least  in  the  constricMons,   because  (at  least  in  Willei’s  experiments)  they  are  looking  at  small  deviaMons  in   the  diagonal  resistance  from  the  plateau  value  corresponding  to  5/2,  which  they   see  in  the  measurements.    The  density  in  the  bulk  could  be  different.  

Q17  

    QuesMon:  In  thermal  transport  measurements,  can  one  subtract  out  the   contribuMon  of  phonons  by  appropriate  experiments?         Answer.  Possibly.    It  is  also  possible  to  reduce  the  effects  of  phonons  by  various   tricks,  such  as  Jim  Eisenstein  has  done,  by  going  to  a  thin  sample  with  a   rough  back  surface.    Whether  this  can  go  far  enough  to  be  able  to  reliably   subtract  out  the  phonon  contribuMons  to  sufficient  accuracy,  I  do  not  know.     One  is  helped  by  the  fact  that  the  phonon  contribuMon  by  itself  would  not   give  an  off-­‐diagonal  component  to  the  thermal  conducMon,  but  the  there   are  sMll  complicaMons  from  the  coupling  between  phonons  and  electrons,   and  as  I  menMoned,  one  would  have  to  be  careful  to  separate  the  diagonal   and  off-­‐diagonal  components  in  a  real  experiment.         QuesMon:    What  about  thermopower?   Answer:    Of  course,  thermoelectric  effects  and  thermal  conductance  will  be  Med   together  when  the  transport  is  due  to  charge  carriers  in  an  edge  state.       If  the  temperature  is  too  high,  or  if  one  is  not  on  a  well-­‐established  plateau,   there  can  also  be  thermal  and  charge  transport  through  the  bulk,  which  is   more  complicated.